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ABSTRACT

Semiparametric estimation of finite dimensional parameters, when the unknown func-
tions have to satisfy some smoothness properties, has been studied extensively. However,
when dealing with economic data these unknown functions often have to satisfy other prop-
erties besides smoothness. These properties are actually the restrictions that economic
theory imposes upon unknown functional forms. Typically, these restrictions turn out to
be shape restrictions such as concavity, linear homogeneity and monotonicity. Though ex-
tensively studied in economic theory, there has only been a limited use of these restrictions
in econometric practice notwithstanding their tremendous usefulness.

In this dissertation, I compute efficiency bounds for finite dimensional parameters, when
the unknown function in the model is either concave, or homogeneous of degree r. I also
construct estimators that actually achieve these bounds and show that homogeneity of the
unknown function can lead to dramatic gains in efficiency for estimating finite dimensional
parameters. As a subsidiary result I have developed a kernel estimator for homogeneous
functions which, as far as [ know, is new to the current econometric literature. I use this
estimator to develop an asymptotically consistent test for homogeneity of functional form.
Furthermore, I also show that if we restrict attention to the class of all regular estimators
with square root asymptotics, then concavity of the unknown function does not help in
estimating the finite dimensional parameters more efficiently.

In conclusion, this dissertation fulfills a twofold objective. Firstly, it enlarges the class of
models that applied economists can deal with efficiently, and provides them with new tech-
niques to efficiently estimate the finite dimensional parameters in semiparametric models

with shape restrictions. Secondly, it eliminates a long standing lacuna in existing theo-
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retical literature on efficient estimation, which has so far confined its attention to models
where restrictions have been placed on the distribution of the “error” term while the un-
known functional form, apart from some smoothness conditions, has been left virtually
unrestricted. To the best of my knowledge, this attempt is the first of its kind to develop
efficiency bounds for models where the shape restrictions are imposed on the unknown

functional form rather than on the distribution of the error terms, which is assumed to be

Gaussian.
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CHAPTER 1
INTRODUCTION

The objective of this dissertation is to determine how finite dimensional parameters
can be efficiently estimated for an important class of economic models. In these mod-
els, some of the functions are known up to a finite dimensional parameter while the
other functions are known only to possess some shape properties such as concavity.
linear homogeneity and monotonicity. Such “semiparametric models with shape re-
strictions” are frequently encountered in microeconometrics. The use of the word
semiparametric here highlights the fact that some components of these models are
unknown functions, while the others are specified up to a finite dimensional parame-

ter.

In this dissertation, we will calculate the minimum asymptotic variance, hereafter
called the efficiency bound, that any estimator of the finite dimensional parameter can
achieve in a semiparametric model when the unknown function is either homogeneous
of degree r, or is concave. We will also construct an estimator that actually attains

the efficiency bound, when the unknown function is homogeneous of degree r.

Previous techniques used in the determination of efficiency bounds applied only to
models where either all functions were parametric or where the unknown functions

were not restricted to possess any shape property. However, by confining our atten-

1
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vion only to such cases, we exclude a large class of models that are of prime interest
to applied economists. In the models that we will consider, the imposition of shape
restrictions usually leads to a reduction in the variance of estimators without harm-
ing other limiting properties such as consistency. Omitting shape restrictions, when
economic theory demands otherwise, would therefore lead to inefficient estimation
procedures thus reducing the power of subsequent statistical analysis. This could
have important policy implications, since semiparametric models are being increas-
ingly used to answer policy related questions. However, inclusion of shape restrictions
complicates estimation because such restrictions generate constraints that are infinite
dimensional in nature. To deal with these infinite dimensional constraints, I use in

this dissertation certain techniques borrowed from nonlinear analysis.

This dissertation limits itself to the analysis of i.i.d. observations, which are com-
monly generated by cross-sectional models for data. We look at the asymptotic
variance because it is a widely used criterion in econometrics and statistics to rank
estimators. Furthermore, in order to exclude pathological behavior such as supereffi-
ciency, all estimators are assumed to satisfy certain regularity conditions. Henceforth,

unless specified otherwise the word estimator refers to a regular estimator.

The organization of this dissertation is as follows. In Chapter 1 we construct
some typical examples of shape restricted models, and also provide a brief review of
efficiency bounds for the parametric case. We then extend these concepts to the case

when the nuisance parameter is infinite dimensional.

Chapter 2 introduces a partially linear shape restricted model. We begin by study-
ing the identification issues and large sample properties for this model. We then
compute efficiency bounds for the finite dimensional parameters when the unknown

function is homogeneous of degree r, and also show how to construct an estimator
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that achieves these efficiency bounds. We also do the same for the case when the
unknown function is concave. The chapter ends with a brief summary of the results
obtained.

In Chapter 3, we use the estimator developed in Chapter 2 to estimate homo-
geneous functions. This estimator is then used to construct a test for detecting the
homogeneity of functional forms. Results of a small simulation experiment, conducted
to study the finite sample properties of this test, are also presented.

To enhance readability, the proofs of all major theorems and allied results have

been confined to the appendices.
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CHAPTER 2
SHAPE RESTRICTIONS AND EFFICIENCY BOUNDS

2.1. Models with Shape Restrictions

Let us begin by constructing some examples of shape restricted models that may
typically occur in microeconometrics. In these examples, we are interested in estimat-
ing the finite dimensional parameters 8; and ¢,, when the only information we have
about the unknown function is that it belongs to a set of functions whose elements
satisfy certain properties. We let F denote this set of functions. All observed data is
i.i.d., and ¢ is the unobserved error component which is assumed independent of the
covariates. We also assume that ¢ is a random term drawn from a Normal distribution
with zero mean and finite variance. In these models, any procedure used to obtain
additional information about the finite dimensional parameters, apart from the fact
that they are elements of a well defined parameter space, is called a semiparametric

procedure.

ExampLE 2.1.1 (Two INDEX MoDEL). Consider n similar firms in equilibrium, which
are geographically dispersed. The firms are competitive, have access to a CRS technology,
and produce a single good. Therefore, for each firm the cost function ¢(q, w™) = qe(w=, 1).

Furthermore, for each firm, the factor prices w* are unobserved, while the cost per unit

4
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(c;) is observable. Notice that ¢; = ¢(w;), and ¢(+) is continuous, nondecreasing, concave,
and homogeneous of degree one in its arguments.

For simplicity, assume that there are only two factors of production. Now let w] =
hi(x,0,) € and, w; = hy(z,d,)e?. Here, hy,h, are known functions functions of ex-
ogenous variables, that determine the factor prices, and (;, (> are error terms. Therefore,
E(clhi,h2) = [c(hi€r, hae$2)dFe e, = f7(h1,h2), and letting € = ¢ — E(c|hy, ha), we
obtain the canonical regression model ¢; = f*(hi(x;,60),h2(2;, o)) + €i;. Note that f-
also has the same properties as ¢(-). That is, f* is continuous, nondecreasing, concave and

homogeneous of degree one in its arguments.

ExaMPLE 2.1.2 (PARTIALLY LINEAR MoDEL). Consider a firm producing two different
goods with preduction fumctions 7/ and F,. That is, y1 = Fi(x), and y» = F5(2), with
(x x z) € R® x R™. The firm maximizes total profits pyy; — Wix + poy2 — wyz. The
maximized profit can be written as m;(u) + m,(v), where u = (p;, w,), and v = (p,, wa).

Now suppose that the econometrician has sufficient information about the first good
to parameterize the first profit function as m;(u) = u’6y. Then the observed profit =; =
u}fy + wa(v;) + €;, where 7, is monotone, convex, linearly homogeneous and continuous in

its arguments. O

ExaMPLE 2.1.3 (ANOTHER PARTIALLY LINEAR MODEL). Again, suppose we have n
similar but geographically dispersed firms with the same profit function. This could hap-
pen if, for instance, these firms had access to similar technology. Now suppose that the
observed profit depends not only upon the price vector, but also on a linear index of ex-
ogenous variables. That is, m; = x!8y + #*(p!,...,pL) + &;, where the profit function 7= is

continuous, monotone, convex, and homogeneous of degree one in its arguments. [
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REMARK 2.1.1. As pointed out by Robinson (1988), partially linear models can serve as

a first approximation to situations with “qualitative uneveness in prior information.” [J

2.2. Shape Restrictions and Semiparametric Estimation

Semiparametric estimation of the finite dimensional parameters, when F is just a
set of functions satisfying some smoothness properties, has been studied extensively.
However, when dealing with economic data the functions in F often have to satisfy
other properties besides smoothness. These properties are actually the restrictions
that economic theory imposes upon the unknown function. As the examples given
above indicate, these are typically shape restrictions such as concavity, linear homo-
geneity and monotonicity. It is by now known that these properties provide powerful
means for developing new estimation and testing techniques. Though extensively
studied in economic theory, there has only been a limited use of these restrictions
in econometric practice notwithstanding their tremendous usefulness. As Matzkin
(1994) points out, these restrictions can be utilized “to reduce the variance of es-
timators, to falsify theories, and to extrapolate beyond the support of the data”.
Moreover, “economic restrictions can be used to guarantee the identification of some
nonparametric models and the consistency of some nonparametric estimators”.

As is well known, the move from a parametric approach to a semiparametric one
is usually accompanied by a loss of efficiency. When restrictions implied by economic
theory are imposed on the the semiparametric model, this efficiency loss may be
mitigated due to a decrease in the variance of estimators. This problem of variance
reduction is most critical since the quality of subsequent analysis depends upon the
quality of current inference. By variance reduction I mean not only the computation
of the smallest asymptotic variance of any estimator of the parameter of interest, but

also the construction of estimators which actually possess this variance. As mentioned
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before, this minimum variance is called an efficiency bound, and an estimator which

attains this bound is termed efficient.

Since shape restrictions can be utilized to reduce the variance of estimators, effi-
ciency bounds are of fundamental importance in semiparametric models with shape
restrictions. These bounds can be used to judge the efficiency of a proposed semi-
parametric estimator and to help develop new estimation techniques. They can also
be used to provide a measure of efficiency loss in the move from a purely parametric
approach to a semiparametric one. Moreover, in some cases these bounds also help

in ruiing out the existence of certain types of estimators (Newey 1990).

The extension of efficiency bounds from a purely parametric to the semiparametric
case was first proposed by Stein (1956) and subsequently developed in the statis-
tical works cited in Bickel, Klassen, Ritov, and Wellner (1993). Attracted by the
elegance of the semiparametric approach and its wide applicability to economics, sev-
eral econometricians mentioned in Newey (1990)’s excellent survey article have also

made valuable contributions to this area in recent years.

However, most of the research to date has concentrated upon developing efficiency
bounds for distribution free models, i.e. models in which the distribution of the error
term is unknown (Chamberlain 1986, Cosslett 1987). Where shape restrictions have
been involved, they have been imposed on the error distribution (Newey 1988), rather
than on the unknown function. Newey (1991) does discuss computing the efficiency
bounds for a partially linear model, but here too the unknown functional form has only
smoothness restrictions, and no shape restrictions, imposed upon it. But these cases
form too narrow a class, since they exclude models with shape restrictions which arise
regularly in microeconometrics, i.e. at the firm or the consumer level. In fact, as far

as I know, this attempt is the first of its kind to develop efficiency bounds for models
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where the shape restrictions are imposed on the unknown functional form rather than
on the distribution of the error term, which is assumed to be Gaussian. This research
therefore, extends the class of models that econometricians can deal with efficiently.
It should be of particular interest to any applied practitioner in the field because it

provides new insights into incorporating shape restrictions in estimation procedures.

2.3. Asymptotic Efficiency and Lower Bounds

For each n let ¢, be an estimate (based on n iid observations) of a real valued
parameter 3o. Suppose that, for each By, v/n(t, — 5o) < N(0,v(Bo)). Then according
to Fisher, v(8,) > i;:, where 75, is the information contained in a single observation,
and v(fp) is called the asymptotic variance of t,. However, in the absence of suitable
regularity conditions, this relationship does not necessarily hold as is indicated by the
canonical example of a superefficient estimator given in LeCam (1953). Therefore, to
make sure that the information inequality holds, we only consider regular estimators.!
Regularity conditions which are typically imposed on an estimator sequence to rule
out superefficiency, may be found in Bahadur (1964) or van der Vaart (1989).

In his seminal paper, Stein (1956), first proposed the idea of computing nonpara-
metric efficiency bounds by using parametric submodels. The basic idea is as follows.
Let 8y € R be the parameter of interest and 7, be a finite dimensional nuisance pa-
rameter. The objective is to compute efficiency bounds for &, when 7, is estimated

nonparametrically. Now as Stein (1956) points out,

... a nonparametric problem is at least as difficult as any of the parametric
problems obtained by assuming we have enough knowledge of the unknown

state of nature to restrict it to a finite dimensional set.

1For the definition of a regular estimator, see Definition 3.4.1.
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In fact we can restrict the unknown state of nature to a one dimensional set. It
is instructive to see how this is done since the procedure generalizes in a straightfor-
ward manner to the case when G is multidimensional and 7y an infinite dimensional
nuisance parameter. We consider the example in Severini (1987).

Let X,,..., X, be iid. observation from a pdf g(z,Bic,...,0p0). Suppose that
the parameter of interest is ;o whiie the nuisance parameter is 7o = (fa0,--. , Bpo) €
RP-!. The vector of parameters to be estimated is therefore (4:°), and the vector of
scores is (S_‘;""1 ). The information matrix for this p dimensional parameter can therefore
be partitioned in the usual manner as

(Esglﬂl ESp‘S,;) _ (Iﬂl Iﬁl,,> .
ES; S5 ES,S, Lg, Iy
Using the partitioned inverse formula, the Fisher information for a regular estimator

of 3, is found to be
Is, = Inin Ly Inp. - (2.3.1)

As Stein pointed out, the same result can be obtained if we look at an appropriate
one dimensional parameterization of the nuisance parameter. This may be shown as
follows.

Let t € [0,1] and define B, = B,+18, forany § € RP. Then the parameter of interest
is B1; = B1o+16;, and the nuisance parameter is, 7, = (B20+102, ..., B0 +16,). Notice
that with this parameterization, estimating t is equivalent to estimating 3,.

With this one dimensional parameterization, the loglikelihood function for estimat-
ing ¢ from a single observation can be written as £(8,; X) = £(B1o + t6;,m:; X). Thus

the score for estimating ¢ is given by
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Selizo = ZBrey -+ B X)|__

OU(By)
= 2_:1 36:

[ ]

where §_, = (62/61,...,0,/6,) € RP=1. The Fisher’s information for estimating 8,

(denoted by i7g,,) is then given by

E (Si|e=o)’
62

o (s

Now find the direction §_; € RP~! which gives the least possible information for

- _ 2
6o = Esﬁm -

estimating 8, and denote this least information by ig,,. 2 Then letting S5, = 9%(‘%2,

: 9€Bo) |, o )2 N
= t
6-llggp_x E ( a5, +8,6_1) , implying that,

—6~, = proj(Ss,|column space of §,).

That is, the optimal value of §_, is given by -, = E(S,S,) 'ES,Ss, which after

a little algebra yields,

ine =ES}, - (E5,,5,) [ES,S;] ™ (ES;S5.)
= Iﬂl - [ﬁlﬂIn—nlInﬂn

2In the literature, ig,, is referred to as the marginal Fisher information for §;.
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11

and this is the same as (2.3.1).

2.4. Extension to the Semiparametric Case

We will now extend the one dimensional parameterization, given in the previous
section, to the case where the nuisance parameter lies in an an infinite dimensional
cone. As will be seen later, the cone structure is useful as it incorporates the shape
restrictions imposed on the nuisance parameter. In order to deal with the conical

structure of the nuisance parameter space, we need to define the following terms.

DEFINITION 2.4.1 (CoNE). Let X be a vector space over R. A subset C of X is called

a cone iff for any c € C, and any A > 0 we have Ace C. O

DEFINITION 2.4.2 (FRECHET DERIVATIVE). Let T be a transformation defined on an
open domain U in a normed space X and having range in a normed space Y. If for fixed
r € U and each h € X there exists a linear and continuous operator L € £(X,Y) such

that

IT(z + k) - T(z) - Lh|| _

0,
-0 Il

then T is said to be Fréchet differentiable at z. The operator L, often denoted by 7'(z),

is called the Fréchet derivative of T at z. O

REMARK 2.4.1. Note that since the limit is taken as [|k|| — 0, we only have to consider

arbitrarily small perturbations h € X. O

DEFINITION 2.4.3 (TANGENT VECTOR). Let M be a subset of a Banach space X. A
vector z € X is said to be tangent to the set M at a point z¢ if there exist an ¢, > 0 and

a mapping t — r(t) of the interval (0,¢) into X such that
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zo+tz +r(t) e M, forallte(0,e),and,

O g a0 g

DEFINITION 2.4.4 (ADMISSIBLE CURVE). In the above definition, let y(t) = zo + tz +
r(t). Then v is said to be an admissible curve in M through zo. It has the property that

7(0) = zq, and ¥'(0) = z is the tangent vector to M at z,. [

DEFINITION 2.4.5 (TANGENT CONE AND TANGENT SPACE). The set of vectors which
are tangent to a set M at the point z,, is denoted by T(M, z,), and, is a closed non-empty
cone. This cone is called the tangent cone to M at z,. If this cone is a subspace, then it

is called the tangent space to M at z,. O

REMARK 2.4.2. An equivalent characterization of tangent vectors and tangent cones is
given in Appendix A. This appendix also contains several useful results about tangent

cones that are used subsequently. (J

We now return to our original problem. So let 3, be a real valued parameter of
interest in an open set B C R, and f* be the true value of the nuisance parameter.
Furthermore, let f* € F, where F is a convex cone in a Banach space H and assume
that the parameter space B x F is parameterized by the curve 3 +— (3, 73) such that
Nglg=p, = f. Now let ¢ — 3, be an admissible curve in B through ;. Any point in
the parameter space B x F then has coordinates (f;,7s,). Again note that with this
parameterization, estimating ¢ is equivalent to estimating (8, 75,). Now consider the

following assumption.

ASSUMPTION 2.4.1. Let the score functions be elements of the Hilbert space L*(D), where

D is the probability measure induced by the data. O
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This is very useful since the geometry of Hilbert spaces facilitates the solution
of projection problems which we shall soon encounter. The Fisher information for

estimating ¢ is then given by,

o 0Bo,150) )]2

4B, 98(Bo, ms,)
|:=o) B |5~ or \ap"

E [‘%e(ﬂtv”ﬂ*)lg-.:or (dt

Let 2,3 be the Fisher information for estimating 3. Then since S is a function of ¢, an

application of the chain rule gives,

g = )
dt t=0

Since ig depends upon 7 only through the tangent vector -d%ngo, the tangent vector

E [£460m)] ] g [ M) M) L, )]2
B an B

4" which gives the least information for estimating g is

aE(ﬂo, 'ﬂpo) ae(ﬁﬂv T’ﬁo) )
a8 + on ( dﬂ )]

2

6" = argmin ]E[
518, €T(F S*)

That is, a—t(il.‘,’,',"—’ﬂl(é‘) is the projection of 242 ;;,"’l) onto 248 ;,’,""L) (T(F, f*)). Therefore,
since we are optimizing in a Hilbert space, §* is characterized by the necessary and

sufficient conditions given in Theorem H.3. That is,

(i) E[W(ﬁo.nao) + 3l(ﬂo.7lan)(5-)] aL(Bo, 'IaL)(é ) =0, a.nd

(i) E[al(ﬂo M8 ) + 9¢(Bo, "ﬂo)(6 )]al(ﬂo ""’)/5) > 0, for all § € T(F, f*).

Now let,

_ az(ﬂmnﬁo) az(ﬂﬂ nﬂo) -
ao—E[ 95 + or (6 )]

Then following Stein (1956), i;ol is a lower bound for the asymptotic variance of any
regular estimator of 4. This is verified in Severini (1987) for the case when the tangent
cone is actually a linear space. But what happens when T(F, f*) is a proper cone,
i.e. when T(F, f*) is not a linear space? To answer this question, let LinT(F,f7)

denote the smallest closed linear space containing T(F, f*). Also, let
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; ; 8€(Bo,mp,) . €(Bo,7s,), d ]2

te= argmin E [ of 4 =
a‘%nao%T(F.J') aB an  ‘dg"”? Y

4= argmin E [ag(ﬂa‘””ﬂo) + 33(@%)( d .,)]
ﬁ"ﬁoew g n

Then since T(F, f*) C linT(F, f*), i;' < §;'. That s, a projection on the tangent
cone T'(F, f*) seems to yield a better lower bound as compared to the one obtained
by projecting the parametric scores on lin T(F, f*).

However, with the help of two parametric examples in the next section we will
show that a projection on the tangent cone T'(F, f*) leads to a lower bound which is

either

(i) too optimistic for the m.l.e. of 3, or

(ii) which is actually beaten by the m.l.e..

But if the projection is taken on l_in_T(_f,_F)_, not only is the efficiency bound so
obtained a valid lower bound, but we will also be able to construct regular estimators
that actually achieve this bound. Hence the space on which the parametric scores
should be projected to obtain the efficiency bounds is W, and not T'(F, f~).
These results will be extended to the semiparametric case in Section 3.3.

Notice that if we project the parametric scores on W, the projection 6~
is given by the necessary and sufficient conditions of Theorem H.2. That is, for all
§ € inT(F, f),

8£(ﬂ07 nﬂo)

[ 3£(ﬂ0 9 nﬂo
a8

+

(6 e 5 = 0

2.5. Shape Restrictions in Simple Linear Regression

In the following examples, we impose monotonicity and convexity in the framework

of simple linear regression to see how the imposition of such a shape restriction affects
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the efficiency bounds for the parameter of interest.
ExAMPLE 2.5.1 (MoNOTONICITY). Consider the following linear regression,
yi = 0 + Aoz + &5, i=1,...,n. (2.5.1)

Here ¢ £ NIID(0, 1), and z is a random variable with positive variance that is independent
of €. The parameter of interest is 8, € (~00,0), and the nuisance parameter is A\ € A =
[0,00). That is, we want to fit an increasing line to the i.i.d. observations (y,z). Then

foliowing the procedure in Section 2.4, we obtain Table (2.5.1).

TABLE (2.5.1). Lower Bounds for Estimating 6,

Nuisance Parameter | T(A, Ag) Lower Bound
Ao=0 [0,00) [1/E[1- Z min{0,(E Z)/E Z*}}*
Ao >0 (—00, 00) E Z?/(Var Z)

Notice that the efficiency bound depends upon the true value of the nuisance parameter
Xo. Let us now see if the m.l.e. of f, achieves these bounds.
So define S,, = Yimi(2i — Za)% 2 = L X0 20, 2’2 = 3, 27, and let 8, denote the
m.l.e. of ;. Then,
G, = {y ~Az ifA 20
Un if A, <0,
with A, = Y0, (% — %,)¥i/Szz. Now letting ¢(-) denote the p.d.f., and ®(-) the c.d.f.

of a standard normal random variable, it can be shown that conditional on observing

4
Z1ye s 920,

t Su/zz —u?/2
Pr{n'/%(, - 65) < t} = / <I>(nl/2)\m/z 2/m — Zav/1) Santt) du

+ ‘D(—nll"’/\o\/ Spz/n) ®(t — 12 NoZ,).
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Then letting F(w) = [,V i5T ¢(u)®(—u—AZ) du, we can show that

u=--00c

Lo(t) + F(t) if Ag=0

B(ty/LEZ)  if Ao >0,

Pr{n"/%(f, - 6,) < t} — {

and that the asymptotic variance

_ L1482 - LEZY 1), =0
AsVar(n'/?(8, - 6,)) = a( , Varz/ 2% VarZ 0
sVar(n (6. =~ ) {E—Z— if Ao > 0.

VarZ

(2.5.2)

REMARK 2.5.1. (i) When EZ # 0,

EZ?, 1(EZ) EZ
VarZ’ 2z VarZ ~ VarZ’

1
1< =(1
<2(+

and the asymptotic variance is not continuous at Ay = 0.
(ii) Also notice that when Ay, = 0, the asymptotic distribution of the m.l.e. is not
normal. [J

The results obtained above are presented in tabular form below.

TABLE (2.5.2). Imposing Monotonicity in Linear Regression

EZ Ao Lower Bound 8,
EZ=0]|A=0]| Attained by the m.l.e. | Not Regular
EZ >0 | A =0 | Not attained by the m.l.e. | Not Regular
EZ<0{X=0 Beaten by the m.l.e. Not Regular

EZ=0|X>0 Attained by the m.l.e. Regular
EZ>0|X >0 Attained by the m.le. Regular
EZ<0|A>0 Attained by the m.l.e. Regular

REMARK 2.5.2. A brief description of the results in Table (2.5.2) follows.

(i) When A\q = 0, the efficiency bounds are attained only when EZ = 0. When
EZ # 0, the bound is either not attained (when E Z > 0), or is actually beaten by
8. (when E Z < 0). However, it may be shown that in all these cases the estimator

8, is not regular.
(ii) When Aq > 0, not only is 6, regular, but it also attains the lower bounds. Now

the tangent cone T(A,\q), when Ay > 0 is (—00,00). But (—o00,00) is also the
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smallest closed linear space containing [0, c0). Hence, if we restrict ourselves to the
class of regular estimators, the space on which the projection is taken to obtain
the efficiency bound should be lin T(A, Ao), rather than the tangent cone itself.
Projection on this larger space will lead to bounds that can be attained by regular
estimators. To do any better, we would have to use an estimator that is not

regular. O

EXAMPLE 2.5.2 (CONVEXITY). We now impose convexity in linear regression. This is
easily done by substituting Z = X2 in the previous example. Thus the shape restricted

regression now becomes,
2 -
yi=00+’\0zi+ei’ t=1,...,n,

under the same conditions as before. Notice that imposing the restriction Aq > 0, now
implies that we are fitting a convex function to the data. We now have the following

results, which are stronger than those obtained in the previous example.

TABLE (2.5.3). Imposing Convexity in Linear Regression

Ao Lower Bound 0,
Ao = 0| Not attained by the m.l.e. | Not Regular
Ao > 0| Attained by the m.lLe. Regular

As before, when Ao > 0, the efficiency bound is attained by f,. However, when Ay =
0, the efficiency bound is not attained. These results once again show that to obtain
efficiency bounds which are attainable by regular estimators, the projection must be taken

on lin T(A, A), rather than the tangent cone T(F, f7) itself. [

2.6. Scalar Parameter of Interest

With the previous section in mind, we are now in a position to deal with scalar

parameters of interest. So let By be an element of an open set B C R. f* € F is the
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true nuisance parameter, where F is a convex cone in a Banach space H. Assume
that the parameter space B x F is parameterized by a smooth curve § — (3, 7ng) such

that ngls=p, = f*, and let

E [az(ﬁo’%) 4 6oy ")finno)]z'

6" = argmin a8 o7 ‘B

S €lin T(F,[%)

REMARK 2.6.1. The direction 6" is the projection of the score of the parameters of
interest onto lin T(F, f*), and is called the least favorable direction for estimating F,. A
curve 7 which gives rise to this tangent vector is called a least favorable curve. However,
s may not necessarily lie in the cone F. For instance, let F be the set of all C%(Z) - concave
functions, and let f* be affine. Then from Section 3.7 we have lin T(F, f*) = C%(Z), and
therefore suppose that 6~ € m is a strictly convex function. Then the curve

A¢ = f* + t8" has 6* as the tangent vector and Aq = f~, but A; being strictly convex does

not lie in F. But since linT(F, f*) C linF, we can always find a curve in linF which
gives rise tc the least favorable direction 6*. We call this curve, a least favorable curve.
Nofice that while Theorem H.2 implies that the least favorable directiorn is unique, no such
implication holds for the least favorable curve. For instance, the curves ¢t — f~ + t6* and

t— f~ 4+ t(t+ 1)6" give rise to the same least favorable direction at £ = 0.

Hence, we have the following definition.
DEFINITION 2.6.1 (LEAST FAVORABLE CURVE AND DIRECTION). Let,
B x linF

be parameterized by a smooth curve 8 — (83,7;) such that, nglg=g, = f*. Then ns € linF

is said to be a least favorable curve for estimating fo, if 557, € lin T(F, f*) minimizes

dg(ﬂﬂv nﬁo) - ae(ﬂo, nﬁo) ‘%(ﬁo’ nﬂo) i 2
'_dﬂ—]z_E[ aﬂ + 677 (dﬂnﬁn)] °

E[
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Moreover, the direction d—dgnﬁo € linT(F, f*) is called the least favorable direction for

estimating B,. O

REMARK 2.6.2. (i) Let %nﬂo be the least favorable direction for estimating By, and

define

8€(Bos m8,) | O€(Bos ), d

iﬂo = E[ 0ﬁ an \dﬂnﬁo)]2°

Then ¢4, is called the semiparametric information for §y, and it may be shown that

i;‘ is a lower bound for the asymptotic variance of any regular estimator of ;.

See for instance, van der Vaart (1989).

(ii) If F is a linear space, then T'(F, f*) = linT(F, f*) = F.

(iii) As mentioned above, linT(F, f*) C linF. A sufficient condition for the converse to
hold is that f* € T(F, f*). This is so, because f* need not always be an element
of T(F, f"). To see this, let A = {1}. Then T(A4,1) = {0}, but 1 & T(A4,1).
However, since this condition always holds for the cases which interest us, we

assume the following. O

AssUMPTION 2.6.1. Let F be a conver cone, and let f* € F. Then, f~ € T(F,f*). O

REMARK 2.6.3. (i) Actually, this assumption holds whenever F is a cone. To see
this let F be a cone, and let f* € F. Now consider the curve y(t) = f* +¢f~, for
t > 0. Since F is a cone, 4(t) € F for all ¢ > 0. Also, ¥/(0) = f*. Hence, v(t) is a
curve in F with f* as the tangent vector. That is, f* € T(F, f*).

(ii) Furthermore, convexity of F implies that 7 C T(F, f*). This may be seen as
follows. Since the tangent cone T(F, f*) is the smallest closed cone containing
F—f,we havethat F~f* C T(F, f)or F C T(F, f*)+ f*. Butif f* € T(F, f*),
then F C T(F, f*), since T(F, f*) is also convex due to the convexity of 7. O

Therefore, under this assumption we can show that whenever F is a convex cone,
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LEMMA 2.6.1. lznT(F, f*) = linF.

ProoOF. See Appendix H.

2.7. Multidimensional Parameter of Interest

Now suppose that 3, € B° C RP. The nuisance parameter f* is once again
an element of F, a convex cone in a Banach space H. Assume that B x linF is
parameterized by a smooth curve 8 — (B, 73) such that n|g=g, = f*. We then have

the following definition.

DEFINITION 2.7.1 (LEAST FAVORABLE SURFACE). Let ¢ — 3, be any admissible curve
in B through B3,. Then 73 is called a least favorable surface for estimating By, if 73, is a

least favorable curve for estimating ¢. That is, 7g, minimizes E (9—!(’3%‘3‘—)-],._.0)2. a

Using this definition we can obtain the following theorems of Severini (1987). These
theorems therefore extend Severini’s results for the case when the nuisance parameter
is restricted to lie in a cone. These results are also of interest because they show
that dealing with a p dimensional parameter of interest is equivalent to to solving p
individual optimization problems. The proofs of the following theorems are provided

in Appendix B for the sake of completeness.

THEOREM 2.7.1. Let ng be a least favorable surface for estimating 3. Denote the least
favorable direction 3 by 6° = (;“571,3)|5=,30. That is, 6; = (F51a)ls=p, for i = i,...,p.
Then, 6~ = (§3,...,6;) satisfies

9¢(By; 1s,)
E [ aB; * an

OUBo: e, 5.')] 9Bo:M8,) 5y -
i 677 ’

forallbd € linT(F,f*),andi=1,...,p.

3Note that the least favorable direction is now an element of x?_,lin T(F, f*).
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THEOREM 2.7.2. 1 is a least favorable surface for estimating B, if and only if for all
6; elinT(F,f*),andi=1,...,p,

P ae 09 ° ae 09 o d aeﬁm o
> [Fhute)  Hleta) Ly, )] Honteds) <o

i=1

THEOREM 2.7.3. Let,

By, ma,) , 94By:1s,), d 0€(Bosms,) , 9(Bosms,) , 4
;ﬂ * 3077 (ﬁﬁ%)][ t';ﬁ * aon (dﬁ"’%)

be the information matriz when ng is a curve in linF, through f*. Then there ezists a

!

r=e|

matriz Ig, such that o'(Ig, — Ia < 0 for all a € RP, iff Ig_ corresponds to the information

matriz when ng is a least favorable surface.

REMARK 2.7.1. (i) This theorem shows that a least favorable surface 75, minimizes
Fisher’s information Ig, in the usual sense. That is, for any other information
matrix [, the matrix difference Ig, — I is always negative semi-definite. Following
van der Vaart (1989), [501 remains a valid lower bound for the asymptotic variance
of regular estimators of G,.

(ii) Furthermore, Theorem 2.7.1 and Theorem 2.7.3 together imply that to find the least
favorable direction in the multiparameter case, we simply find the least favorable

direction corresponding to each component of the parameter vector.
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CHAPTER 3
A GENERAL SHAPE RESTRICTED MODEL

3.1. Introduction

Consider the regression y = x8, + f*(2) + €, with € 4 N(0,1). In this chapter we
show how to efficiently estimate 3,, when the only information we have about f* is
that it has a certain shape. That is, we efficiently estimate 3, when the only thing
we know about f* is that it lies in F, where F is a compact set of functions with
certain shape properties. These shape properties are such that F is a convex cone.
We examine two cases in detail. In the first case F is the set of C* - homogeneous
functions of degree r, while in the second case the elements of F are C? - concave
functions. In each case we compute the efficiency bounds for estimating 3,, and also
propose an estimator that attains these bounds. The efficiency bounds are shown
to be determined by a projection onto l—in_T(J-'—,f')-, the smallest closed linear space
containing the tangent cone to F at f*. This tangent cone, denoted by T(F, f*),
seems at first sight to be the natural space to determine the efficiency bounds. How-
ever, we prove an “impossibility” result showing that projecting onto T'(F, f*) yields
bounds that are not attainable by any n'/? consistent, regular estimator of 3,. This
“impossibility” result is used to show that in the class of all n!'/? consistent regular

estimators of 3,, homogeneity of f* can lead to dramatic efficiency gains in estimating

22
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B, while concavity of f* does not help in estimating 3, more efficiently.
We now begin our study of a general shape restricted semiparametric model by

analyzing the partially linear model. For ¢ = 1,...,n, consider the regression
Yi = T1iPro + Z2iBa0 + - - - + TpiBpo + (214, 22:) + €.

AssuMmPTION 3.1.1. In the above model let,

(i) € £ N(0,02), where 62 is known;

(it) By = (Bro,--- »Bpo) € B°, where B is a compact subset of RP;

(iil) x comes from a distribution with compact support X in RP. Similarly, z = (zy, 22)
comes from a distribution with compact support Z = Z, x Z, in R%. Furthermore,
X,z have a joint density go(-, ), which induces a probability measure G on support
Se;

(iv) let H denote the set of all C? functions on Z with uniformly bounded values, gra-
dients, and Hessians. Then f* € F C H, where F is a closed, conver cone in H,
and consists of functions that satisfy certain shape properties;

(v) € and (x,2z) are independent, and we observe (x,y,z). [

REMARK 3.1.1. (i) The assumption that o2 is known, is w.l.o.g. since it can be
shown that the efficiency bound is not affected by the knowledge of o3. Therefore,
we choose 02 = 1.

(ii) Since H is a compact subset of C%(Z) w.r.t. the C%2 norm and F is a closed subset

of H, F is also compact w.r.t. the C?2 norm. O

NoTATION 3.1.1. Unless otherwise specified, || - || represents the sup norm in function

spaces, and the Euclidean norm in finite dimensional spaces. [
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3.2. Identification

The question of identification, as has been pointed out many authors, is logically
prior to that of estimation. There is no sense in estimating parameters which are not
identified. In this section we provide sufficient conditions under which the parameters
(f7,B) are identified. As we shall soon see, parameters in the partially linear model
are identified under fairly weak conditions.

Since we observe only the 3-tuple (x, y,z), the most that can be obtained from the
data is the joint density of (x,y,z). The question of identification then reduces to

that of recovering the true parameter values (f*,3,) from this joint density.

AssuMPTION 3.2.1 (IDENTIFICATION). Let,

(i) the vector B, be without an intercept term, and
(ii) let the elements of the vector o(x,z) = x — E(x|z) be linearly G - independent.

That is, if a'p(x,2z) = 0 for G - a.a. (x,2), thena =0. O

REMARK 3.2.1. We exclude intercept terms because they cannot be identified in the

partially linear model. O

We then have the following result, which was first obtained by Robinson (1988).

For the sake of completeness, we provide a proof of this result.

THEOREM 3.2.1 (ROBINSON). Let the partially linear model satisfy Assumption 3.2.1.

Then, (B, f*) is identified in (B, F).

Proor. First notice that if the true parameter values are replaced by (3, f) € B x F.

then

y—E(y]z:8, f) = o(x,2)- B +¢.
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So to show that (B,, f*) is identified, let (B3,, f1) and (B,, f2) be two values of the true

parameter (3,, f*) and let
E (ylz: 81, /i) = E(ylz; By, f2)-

But this implies that ¢(x,2)-(8, —8.) = 0. And since the elements of ¢(x, z) are linearly
independent by assumption, we have 8, = B, which also implies that f, = f,. Therefore,

(B;. f7) is identified. O

3.3. Efficiency Bounds for the Partially Linear Model

Once we know that our model is identified, we can proceed with its asymptotic

analysis. Now since the data generating process is
Yi =x,-ﬂ0 +f.(Z.')+€,' 1= 1,...,n, (331)
the loglikelihood for a single observation is given by
. 1 1 .« 12
UBo, f7I%,y,2) = ~5 log(27) = 5y = xBy ~ f7(2)]" + log go(x, 2).

Now let B € B represent the parameter of interest, and let 3 — (3,73) be a smooth
curve in B x [inF, such that ng|g=p, = f*. The vector (B,73) is called a parametric
submodel. The word parametric here refers to the fact that since the nonparametric
part is now indexed by 3, the estimation problem is restricted to finite dimensional
or parametric space. The term submodel simply means that (3,7n) is just one of the
several parameterizations that may be chosen. Notice that the parametric submodel
passes through the truth when 3 = 3,.

Assuming that the data is generated by this parametric submodel, the loglikelihood

function becomes

f(ﬂ, nﬁlx7 y,Z) = —% lOg(27‘l’) - %[y - Xﬂ - Uﬁ(z)]2 + lOggo(X, Z). (332)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

Note that at B3,, this loglikelihood function equals the true likelihood. Hence the

score function for 3 is,

5. _ 4By.s,)
By — dﬂ
_ UBo:7s,) | 0U(Buma,) 4
= aﬁ + an (dﬁ nﬁo)'

Notice that even though Sg,_ is a (px 1) vector, from the discussion in Section 2.7 we
know that it suffices to look at the componentwise scores. Therefore, for: =1,...,p,

S, = —€[zi + (ér]‘;o )], with least favorable direction é; given by

6; = argmin E[z; + &% (3.3.3)
€€t T(F.J7)

Hence the efficient score §, for computing the semiparametric efficiency bounds of

By is

z; — 0]
§=¢|
T, — 6,
The matrix (ESS?)~!, then gives the semiparametric efficiency bounds for regular
estimators of 3,.

However, merely knowing the bounds is not enough. To be of any use, the bounds
must be attainable. We now discuss the construction of estimators that achieve these
efficiency bounds.

So let L.(B,n8) = Y iz, 4B, na|X:, yi,2z:) denote the empirical loglikelihood func-
tion for the data generated by the parametric submodel.

Now if we knew 7, maximizing L,(B,7ns) would lead to an estimate of 3, with
asymptotic variance depending on 75. And since m.l.e. is efficient in the parametric

case, the asymptotic variance of this estimator would just be the inverse of the Fisher
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information for 3. However, the fact of the matter is that we do not know 7g, and so
straightforward maximization of the likelihood is infeasible. To get feasible estimates
we adopt the approach given in Severini and Wong (1992).

So fix B, and let 7jg denote a consistent estimator of 5. Then L,(8, 7)) is called the
profile (or concentrated) likelihood for 3. We now show that maximizing L.(8, 7))
leads to an efficient estimate of 3, provided that 7jg is an estimator of a least favorable
curve.

Since we want 3, — obtained by maximizing L, (8, fjg) — to have the same asymp-
totic distribution as the estimator obtained by maximizing L,.(3,ng), we require that
L.(B,7p) and L,(B,np) have the same local behavior at B8 = 3,. In particular, and

this is evident from the standard way of proving asymptotic normality, we require

[n=1/2 dL..(,g;.ﬁp ) _ p-l/2 dL..(gE,nan)] = 0,(1). But,

dL,(B,,7 dL,.(B,, 12 @ -
n-1/2 [ (Bo 17;30) _ (ﬁo '7/30)] =n I/ZE [Ln(.BO’nBu) —- Ln('g’fm)]

B dp
~ =1/ i aLn(ﬁo7nﬁa) s
=n”! 2dB [—_377 (s, Uﬂo)]

— n_l/gi aLn(ﬁo: Tlﬁa)

" o (18, — nﬁ.,l
Te:n I
- 3Ln(ﬂ,fm)<d. d )
127 7n\705 1Be/ [ -
+:l 677 dﬂnﬁo dﬂnﬁo J'
Term 11

Now the Fréchet derivative

3£(ﬁa nB; Xi, Yi, z;)
dn

= y; — X8 — np(2:),

and therefore
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- z [xi + Enﬁ(z,-)] (g0 (2:) — 7, (22)-

Thus evaluated at 3,

aLn ] -l
n"”%——(%hl) =—n"!/? Z[X: + dﬂnﬁo(z Dl(7g, (z:) — 1, (2:))-
i=t

Now suppose that we can show that |[fjg, — 7g,[| = 2,(n~*!) for some o, > 0. So

consider the sum

n=!/? Z(xx dﬂnﬁu)nm(nﬂo — 7, )-

i=1

If ng is chosen to be a least favorable curve, then by Assumption 2.6.1 and the least

favorable curve property of 7g
d o1
E(x: + —dﬁflﬁu)n (%18, — Ns,) = 0

and the terms in the above mentioned sum are centered around their means. There-

fore, by applying a uniform CLT valid in function spaces

"llzz(x, dﬁn"" n® (g, — Ma,) = Op(1),

and this implies that

n

d
n2y (% + Enﬁo)(ﬁﬁo — 78,) = 0p(1)-

i=1
Hence Term I is 0,(1). Now let us look at Term II. We again show that if ||3;—017,30 -
&m;o” = 0,(n~?) for some a, > 0 then Term II is also 0,(1). To see this, first
notice that by Remark 2.6.1 for any £ € lin T(F, f*) there exists a curve ng € linF
with tangent &, such that ng, = f*. Then by using the unbiased property of the score

functions
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d
0=E BEE(ﬁO’ T’ﬂo)

) [ag(ﬂa()énﬁo) + af(ﬁo, nﬁo (E)]

al(ﬁ 02 nﬂo

——=(€),
since -al(p%’—ﬂl is just the parametric score function. Therefore, the terms in

- aL (ﬁ s Tl ) ( d )
1/2 0 0 az

are also centered around their means, and by applying a functional CLT we can again

show that

AL.(B,, d . d
n-1/2 (:g; Wﬁo)n (E"”“ - Za_nﬁo) = 0,(1),

implying that

n

~1729LA(B ’Wﬁ)(d n d )
1/2 0 o —_— =
an dﬁnﬁo dﬂnﬁo OP(]‘)'

Hence Term II is also 0,(1), and

[ 124l (gg n;ao)] _ [n-uz&'%ﬂeﬁ] + o,(1). (3.3.4)

Therefore, if 7 is an estimate of a least favorable curve, maximizing L.(8, ig) yields
the same asymptotic result as maximizing L,(3, 1g), and under certain regularity con-
ditions we can show that \/n(8, ~ B,) <N (0, Igol), where IEOI is the semiparametric
information for B,. Thus, in order to do feasible maximum likelihood estimation, 7g
must be a least favorable curve otherwise the terms in Term I and Term II will not
be centered around their means. Hence we would not be able to apply a CLT, and

this approach would fail.

REMARK 3.3.1. Notice that this argument also indicates that to obtain efficient estima-

tors of B,, we need estimators of the nonparametric part (and their derivatives) that are
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consistent with rates of convergence faster than n®. We will obtain such convergence rates

by using kernel estimators. O

3.4. An Impossibility Theorem

As the parametric examples in Section 2.5 demonstrated, when T(F, f*) is a proper
cone projection on T'(F, f*) led to efficiency bounds that were unattainable by the
m.le.. In this section we make that argument rigorous for semiparametric models.
That is, we will now show that if efficiency bounds for estimating 3, are obtained
by projecting the parametric scores on a proper tangent cone, then no regular n'/2 -

consistent estimator of B, can achieve these bounds.

NOTATION 3.4.1. Let Ag be a curve in F such that Ag, = f, and let § be any vector
in RP. O

The above mentioned result will be shown to hold under the following condition.

AssuMPTION 3.4.1 (PROPER TANGENT CONE). Let the matriz I, — I, be negative def-

inite, where,

Il =
inf £ [ae(%o,,\po) + ae(ﬁo,,\ﬂo ( E)] [ae(ﬁo,,\ﬁo) N ae(ﬁo,,\ﬁa) (E)]
gEX?_ lin T(F,/°) /€]
and,
I') =
9¢(By; As,) 35(ﬁo, Ag, ) ] [35(507 Ag,) 33(ﬁo, As,) ]
Eex:’:l%'(?.r) [ ap + (&) 9B + €3]
a
REMARK 3.4.1. (i) In the above assumption, the infima are taken w.r.t. the usual

order on the space of all px p matrices. From Theorem 2.7.3, I, and [, exist if Ag, is
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a least favorable curve in linF and F, respectively. Therefore, a necessary condition
for this assumption to hold is that the least favorable directions in x2_,lzn T(F, f*)
and x?_,T(F, f*) be different.

(ii) This condition certainly holds for the parametric examples provided before. It also
holds for the semiparametric models under study. For instance, let F be the set of
concave functions in H, and let f* be affine. Then as can be seen from Section 3.7,
I, is achieved by a tangent vector which is a concave function in H, while [ is
achieved by a tangent vector which is just a conditional expectation subject to

smoothness conditions. [J

Before we state the main result of this section, we define what we mean by a

“regular” sequence of estimators.

DEFINITION 3.4.1 (REGULAR ESTIMATOR). Let 3, = B, + n~'/26. Then a sequence of
estimators 3, is said to be regular if n!/?(3, — B, ) converges in distribution, under 3,.

to a limiting distribution that does not depend upon . O

REMARK 3.4.2. Let £z be any curve in C*(Z) through f=. That is, {5 € C?*(Z) for all
B € B, and &g, = f*. Now perturb B3 such that the perturbed value, denoted by S3,, lies
in a n='/2 neighborhood. That is, for any 6 € R?, 8, = B, + n~'/26. Then by the mean

value theorem

. 12 @
&, = [ +n78 7565,

where, 3, lies between B, and B,,. Therefore, n='/2 perturbations of the finite dimensional
parameter generate n~!/2 perturbations of the infinite dimensional parameter. However,

it is clear that if f* € F C C*(Z), the perturbation {_ need not lie in 7. 0O

The main result of this section is the following theorem.
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THEOREM 3.4.1. Let F be a convez cone in H, and let f* € OF be such that the tangent
cone T(F, f*) is a proper cone. Then under Assumption 3.4.1, no regular n'/? consistent
estimator of B, can achieve the efficiency bounds obtained by projecting the parametric

scores onto the tangent cone T(F, f*).
Proor. See Appendix C. 0O

REMARK 3.4.3. The utility of this result will become evident in Section 3.7, when we

impose concavity upon f=. In Section 3.7
F ={f €H: fis concave},

and F is a proper cone, i.e. it is not a linear space. Now suppose that f* lies on the
boundary of F, say for instance f* is affine. As can be seen from Secref 3.7, when f*
is affine T(F, f*) = F. Hence by Theorem 3.4.1, projection of the parametric scores
onto T(F, f*) will lead to efficiency bounds that are unattainable by any regular n!/? -
consistent estimator of 3,. To obtain attainable efficiency bounds, we have to project onto
Wﬂ which is just . Hence, concavity of f* does not help us in estimating 3,

more efficiently. O

3.5. Consistency and Asymptotic Normality of 3,

Closely following Severini and Wong (1992) in this section, we will show that
the estimator 8, obtained by maximizing the profile likelihood is consistent and

asymptotically normal.
NoTaTIiON 3.5.1. With L,(8,7g) as defined before, let,
Ln(Ba, fig,) = 5up Ln(B.71s). O
BeB
REMARK 3.5.1. Unless otherwise specified, all expectations are taken under the truth

i.e. under (B, f*). O
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AssuMPTION 3.5.1 (IDENTIFICATION). Let

K(ﬁvﬁo) = Ef(ﬁ, B X, yvz) - Ee(ﬂov f-; X, y!z)'

Then,

(i) K(B,8,) <0, if B # By-
(ii) B, is the unique global mazimum of K(B,8,). That is,

;telgEl(ﬁ,np;x, y,2) = BBy, fix,y,2). O

REMARK 3.5.2. Because we had shown that B, was identified in Section 3.2, this as-

sumption holds for the partially lincar model. O

AssuMPTION 3.5.2 (SMOOTHNESS). Fori,j=1,...,p, let

(i) E {suppen sup, ez | LEZZL|2} < oo,

. 2UBnix,y,2)|2
(i) E {SupﬁeB SUP, ¢ | gﬁ?;z“ |9} < 0

8°UB,n;x.y,z)
(iii) E {sup,SEB sup,,eunr| aa,angjas:,z |2} < 00,

. 3UBnix,y,
(iv) E {supﬁEB snpqemh—l(mmz} < 00,

an?

(v) E {SupaeB SuPnemlaal TR |2} <co. O

88,893

REMARK 3.5.3. Let us verify (i). Other conditions can be similarly checked. Since the

Fréchet derivative ﬂ&%’;ﬂﬂ =y — xB — np(z),

ae(ﬂv B XY, Z) 2

_ 2 2
= < 2ly - xB[* + 2na(z)]

< 4)yl* + 4p(|<|llIB + 2Ims(2)]*-

Hence, for all z
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0B, 1s;X,Y,2)
on

2
E {sup sup } < 4E |y)? + 4p® sup ||x|| sup ||BI} + 2 sup |n|?
BeEB neH xeX BeB neH

< 00,
since (x,2, 83, 7n) all come from compact sets. [J

AssuMPTION 3.5.3 (NUISANCE PARAMETERS). Let a least favorable curve be given by

ng, and let fjg be a consistent estimator of ng. Then for some a;,a; > %, 6 >0, and

t=1,...,p, assume that

(i) supy, i, (¥, v) ~ 78, (u, )| = o(n~),

(ii) Py, |3577i8, (1 0) = 7578, (2, )| = o(n=*),

(iii) SuPgep SUPy vez Ifia(t, v) = Ma(u, v)| = 0y(1),

(iv) supgep SUPy ez lz%‘;ﬁﬁ(”v v) — ;Z—ﬁa(u, v)| = 0p(1),

(V) SUPgen SUP, yez | 552, v) — f5ama(u, v)| = 05(1),

(Vi) SuPpep SUPy vez | Zla(w, v) — &mp(w,v)| = 0p(n=°), € € {u,}, and

(Vi) SuPgen SUPy vez |2 75 M8(%, v) = g g5-ma(w, v)| = 0,(n~%), € € {u,v}. O
We then have the following results.

TucoreM 3.5.1. B, & B,, as n — .

Proo¥F. See Appendix D. O

THEOREM 3.5.2. n'/%(8, ~ B,) = N(0,I5)).

PRroOOF. See Appendix D. O

THEOREM 3.5.3. B, is reqular.

PRroOOF. See Appendix D. O
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3.6. The Case of Homogeneity

Let us now examine how certain shape restrictions on the unknown function, that
are important in economic theory, influence the efficiency bounds for finite dimen-
sional parameters. We begin with the case when f* is a homogeneous function of
degree r.

So let F be the set of functions in H which are homogeneous of degree r, i.e.
F={feH: f(Az) = A" f(z),A > 0}.

Then the solution to (3.3.3) is a projection of z; onto linT(F, f*). Since F is a
closed linear space, from Corollary A.1 we have T(F, f*) = F which implies that
linT(F, f*) = F. Therefore, we simply project z; onto 7. The solution to this

projection problem is given by the following theorem.

THEOREM 3.6.1. The projection of z; onto F is the function

v E(z;23|2 = %)

EGTTZ=5)

6" (u,v) =~

PROOF. See Appendix E. O

u"E(z.zf|L=2)

REMARK 3.6.1. Notice that if we had taken the projection as ! ——gTEasy o the
1 12T v

uniqueness of the projections (postulated by the classical projection theorem) would imply

that
v E(z:2]|2 = %) vV E(z; |2 =)
EGzrlz=% —  E(#(2=Y)

That this is indeed the case, can be seen as follows.

IThat this is a valid projection can be seen immediately, since this also satisfies the necessary
and sufficient conditions of the classical projection theorem.
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This is a nice test of the validity of the result obtained in Theorem 3.6.1. O

From Theorem 3.6.1 the efficient score § for computing the semiparametric effi-

ciency bounds of B, is

25 E (2125 2)
LT TR

Uy
i
™

o Z;E(fﬂﬂ‘%)
P E(zg'l;;-)

The matrix (ESS")~!, then gives the semiparametric efficiency bounds for 3, when
the true function f* is homogeneous of degree r. A natural question at this point is
to inquire about the gain in efficiency obtained by imposing the shape restriction of

homogeneity. The following example provides an interesting case in point.

ExaMPLE 3.6.1 (HOMOGENEITY INCREASES EFFICIENCY). Let 8 € R2 Our model is
then y = 2,06, + €202 + f(21,22) + €, with ¢ 4 N(0,1).
To simplify matters even further, let z;, = 2, = z, and let x = (z,,z,) be completely

predictable by z. Say for instance, z; = z? and z, = z%. The model then reduces to
y=2B1+ 2B+ [*(2,2) + .

Now consider the following two cases.

Case I: No shape restrictions on f°.
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That is, just assume that f* € H. We claim that in this case, (8, 82, f*) is not identified.

To see this, let g be the joint density of (y, z) and define

S5 = (81,82 f7)

Sy = (o, a9, h7).

Then if we can show that there exist structures S, S, with S; # S, such that g(y, z; 5)) =
9(y,2; 82), (B, Ba, f*) is not identified. Solet §; = (1,0, f*(2,2)) and S, = (1,1, f*(2.2)—

23). Clearly S, # S, and since g(y, 2) = g(y|z)g(z) we have,

9(y, 2 81) = (2x)~V/? exp{—%(y - 22 - 2°.0- f(2,2)’}g(2)
= (2r) 2 exp{—3(y ~ 7~ f(,2)g(z) and,
9(y, 2 52) = (2m) 7'/ eXP{—%(y ~ 28 =28 = f*(2,2) + 2°)}g(2)

= (27) 2 exp{~3(y = 7 ~ [(2,2)}g ).

Therefore, g(y, 2; 51) = g(¥, z; S2) and so (81, 0., f*) is not identified. It is not difficult
to see that this also implies that both (3;,82) and f* are separately not identified. Due
to this lack of identification, the lower bound for the variance of any estimator of (3, 3>)
is (00, 00).

Case II: Now let f* be homogeneous of degree 1.

Since f* is homogeneous of degree 1,
y=2"6+ 2B+ zf"(1,1) +e.

But this clearly shows that in this case (8,, 82, f7(1,1)) is identified. Therefore, the effi-

ciency bounds for estimators of 8, and (3, are finite.
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Hence, by imposing a shape restriction on f* we can identify the finite dimensional

parameters and achieve a dramatic gain in efficiency. O

REMARK 3.6.2. Even though this example has an artificial flavor, it illustrates the po-
tential gains in efficiency that may be obtained by imposing shape restrictions. An interest-
ing exercise here would be to examine what shape restrictions on f*, besides homogeneity,
allow us to identify 3. Notice that this example also illustrates the strength of homogeneity

as a shape restriction. O

Here is another example demonstrating that large gains in efficiency are possible

under homogeneity, even when the parameter of interest is identified.

EXAMPLE 3.6.2 (ANOTHER SIMPLE EXAMPLE). For (fo,2) € R x R, and € £ N(0,1),
let y = 280+ f*(2)+¢€, where z, z 2 UIID(0,1), and f* is linearly homogeneous. Now since
f* is homogeneous of degree one, y = zfy+2f"(1)+¢, and the lower bound for the variance
of a regular estimator of 3, can be shown to be 8.4. However, if homogeneity is not imposed
upon f* it is easy to see that f, still remains identified, but the lower bound increases to
12. Therefore, the asymptotic relative efficiency of the estimator under homogeneity w.r.t.
the estimator when homogeneity is not imposed is 3% = 1.428. Thus the loss in efficiency

by not imposing homogeneity, when f* is truly homogeneous, is 42.8%. 0O

To show that the bounds obtained in the beginning of this section are meaningful,
we now construct an estimator of B, that achieves these bounds. As discussed in
Section 3.3, we need 7z (the estimator of a least favorable curve) to efficiently esti-
mate B,. Once we have 7jg, we can estimate B, by maximizing the empirical profile

likelihood. So let 75 be a consistent estimator of a least favorable curve 7g. If

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

B, = arg max —3 Z [9: — x:8 — 71(2)]° + constant

l:l

= arg min Z [v: — x:8 — 7ia(=:)]"

i=1
then as discussed before, 3, is an efficient estimator of B,. We now define a least

favorable curve, and also propose an intuitive estimator of the least favorable curve.

AssuMPTION 3.6.1. Let K(-) be a positive, real valued function on R such that,
(i) K(-) vanishes outside [-1, 1],

(ii) SUP,e(~1,1) [K'(s)| < o0, and SUP,e(~1,1) [K”(s)| < oo,

(iii) [}, K(s)ds =1,

(iv) f_l1 sK(s)ds =0,

(v) f_lls'*’K(s) ds<oo. O

ASSUMPTION 3.6.2. Let a, be a sequence of positive numbers (the “window width”) such

that a, — 0 and na, — 00. [J

ProrosiTioN 3.6.1. With K(-) and a, as defined, for any (u,v) € Z, x Z, let

er[yj 2]!21' = 2] P v E[zuzzJIi_;f %]

21121 u — - ‘Bi r|21 u
B ey LA TEEm o
CUD D7 2JK( (2-22]) & vl zfizir’jK(L[u 7:']

ﬁﬁ(uvv) = Z?—l zer(a"[u ﬂL y Zﬂl ZJ =1 erK( [ z_u_])

Zz, i=1 22y

nﬁ(uv ‘U) =

Then ng is a least favorable curve, and 7jg is a consistent estimator of 1g.

ProoF. See Appendix E. O

The estimation problem yielding efficient estimates of 3, is then
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A n P 235 Z"‘—l yjz;]_K(_l. S TR _‘_11_])
ﬂ = a.rgm.in [y — zk'ﬂk —_ 1= Gn b22¢ 225
i P L Pl v A (G )

-
EPZ p 2 Sjer T2 K(E[ 2 — 22])

- k
2 TS SRR (L - )

Thus to make sure that the consistency and asymptotic normality results in Sec-

tion 3.5 still hold, we have only to verify Assumption 3.5.3. This is done using the

following result.

THEOREM 3.6.2. Let the random variable z,/z, have support T and p.d.f. p(t). Also,
let

(') ¥(t) = Efyz3| 2 = t]p(2),
(it') p(t) = E[z7|2 = t]p(2),
(iii") pi(t) = E[z:25| 2 = t]p(t), fori=1,...,p, and
let ng be a least favorable curve consistently estimated by 7jg given above. Furinermore,
let %7750 denote the least favorable direction and assume that
(i) Ely|? < oo, for some q > 2,
(ii) supier Ely?l] < oo,
(ili) sup,er p(t) < oo,
(iv) 0 < infuez, |u| < sup,ez, 1| < oo,
(v) 0 < infyez, |v| < sup,ez, [v] < oo,
(vi) 0 < supyep |9Y)t)| < o0, for j=0,1,2,3,
(vii) 0 < sup,er 1P9(8)| < 00, for j=0,1, andi=1,...,p,
(viii) inf,er |u(t)] > 0, 0 < sup,er |1'(£)] < o0.

Then for A > 0, a sufficitent condition to obtain

(1) suppep SUP, yez [f8(t, v) = np(u, v)| = 0p(n™?), and
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(2) suPgep SUPuvez | 578(%: V) — 757(1, V)| = 05(n7?),
is to choose the window width a, = n=°, such that a > 0 satisfies

oo 1=2@-1)
q

.
5 S

Moreover, if £ € {u,v}, then to obtain
(1') 5uPpen U, pez | 2781, v) — Z7a(u,v)] = 0p(n=2), and
(2) subpen SUPwpez |2 sl ) — £ ma(u,0)] = 0y(n~),

it is again sufficient to choose a, = n~°, with a > 0 satisfying

(1-2))(¢-1)
3g-2 )

A
5 S a <
PROOF. See Appendix F O

3.7. The Case of Concavity

Let us now look at the case when the unknown function f* is concave. We want
to examine the relationship between the efficiency bounds for B, and the degree of
concavity of f*. That is, we want to find the efficiency bounds for estimating 3,

when,

(i) f* is strictly concave, or
(i) f~ is affine, or
(iii) when f* is concave but not strictly concave.

We begin with a simpler problem to obtain a geometrical insight into the original
problem. So as an illustration, we look at the space of C? concave functions on Z, a
compact subset of R. Later on we will obtain results for the case when Z C R?, as in
the case of homogeneity. Note that F is used to denote the set of concave functions
on Z, even when Z is a subset of the real line. However, this should not cause any

confusion. As usual, before proceeding we define some useful terms.
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DEFINITION 3.7.1 (HALF-SPACE). If V is a Banach space and f € V*,f # 0, then
Vit ={veV: f(v) >0} is called the (positive) half-space defined by f. oV ={veV:
f(v) = 0} is called the boundary of the half-space.

DEFINITION 3.7.2 (MANIFOLD WITH BOUNDARY). Let H be a half-space in a Banach
space V. Then a smooth manifold with boundary (modeled on V) is a Hausdorff space

M, such that open sets in M are diffeomorphic to open sets in H.

REMARK 3.7.1. Foreach u € Z,let H, = {f € C*(Z): f"(u) < 0}. Then H, is a closed
half-space of C%(Z) defined by f”, and 8H, = {f € C¥(Z) : f’(u) = 0}. Note that in
general the differentiation operator is unbounded, but the use of the C? norm here, makes
it into a bounded operator. Also note that open sets in H, are of two types:

(i) those that contain points of 8H, (i.e., all f € C*(Z) such that, f"’(u) =0),
(ii) and those that do not. OO
Now back to the geometry. We begin by noticing that F is a convex cone imbedded

in C?(Z). Since C%(Z) is a Banach space, it is a smooth manifold. Now if we could

somehow show that F was also a smooth manifold modeled on C?(Z), then any point

in F, and f* in particular, would have neighborhoods diffeomorphic to open sets in

C?(Z). This would imply that the tangent space at each point of F would be C%(Z)

itself. Therefore, projecting onto m would be equivalent to projecting onto

C%(Z). Hence irrespective of the degree of concavity of f*, the projection would just

be a C*(Z) function. In geometrical terms, we would be able to approach f* from

any direction and no gains in efficiency would occur.

Unfortunately, F is not a smooth manifold modeled on C?(Z). Heuristically, this
may be seen as follows. With H, as defined in Remark 3.7.1, F = Nyez H,, and since
the boundary of each H, may be represented as a line in R2, F has the structure of

a wedge. The cutting edge of this wedge (the “kink”) is the collection of all linear
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and constant functions, including the zero function, while each face of this wedge is
occupied by functions whose second derivative vanishes at that point. This wedge
structure agrees with our intuition, since we know that F is a cone. Because of this
structure, the location of f* inside F (i.e. the degree of concavity of f*) affects the
direction from which we can approach it.

Since F is not a smooth manifold, the tangent space varies from point to point.
Therefore, we first have to find T(F, f*), the tangent cone to F at f. It is not
unreasonable to expect that since F is a proper cone, T(F, f*) will also be a proper
cone. But keep in mind that we have to project onto lin T(F, f~), and not onto
T(F, f*). Once we obtain T(F, f*), we will show that lin T(F, f) is just H. Hence
projecting onto W is equivalent to projecting onto H, and as far as the
finite dimensional parameters are concerned there is no gain in efficiency from the
concavity of f=.

Now back to the original problem where we make this argument rigorous. So let
F be the set of concave functions in H, and f* € F. Then to obtain the semipara-
metric information for the finite dimensional parameters, we have to project onto
linT(F, f~). Let us first determine the nature of this space. To do so, consider the
set of functions defined below.

Let Z, be a non empty subset of Z, and let, 2
W= {feH: det[Vif(u)] = 0, orVZf(u)is n.d. forall u € Z, C Z.}

REMARK 3.7.2. (i) The reason for defining W will soon be apparent.

(ii) Since the Hessian of f € W is negative semi-definite on Zg, we can characterize W
as the set of functions in H which are concave on Zo C Z. This implies that 7 C W.
Notice that a function could be strictly convex and still be in W if the determinant

2The abbreviation “n.d.” stands for “negative definite.”
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of its Hessian vanishes on Z,. For instance, in R? the function (z,y) — z* + y*
is strictly convex, but its Hessian is zero at (0,0). Hence if Z, = {(0,0)}, then
(z,y) — z* + y* is an element of W.

(iii) W is a closed convex cone and not a linear space, since all strictly concave functions

are in W while some strictly convex functions are not. [J

We now have the following results.

THEOREM 3.7.1. Let F be the set of concave functions in H, and let f* € F. Then with
W as defined above,

H if f* is strictly concave on Z,
T(F,fY=SF if f° is affine on Z,

W if f* is concave (but not strictly concave) on Z.

PRrROOF. See Appendix G. O

REMARK 3.7.3. (i) Notice that the tangent cone T(F, f*) is not unique, but de-
pends upon the degree of concavity of f*.

(ii) If f* is concave, but not strictly concave on Z, there exists a nonempty set Z, C Z,
on which det[V? f*] vanishes, * while on Z —Z, the Hessian matrix V2 f* is negative

definite. This gives the rationale for defining W. O

THEOREM 3.7.2. linT(F, f*) = H.
PROOF. See Appendix G. O

As before, for i = 1,...,p the score function for g; is

e[z + 6(z1,22)], 6 € H i f* is strictly concave,
Sp, = qelzi +6(21,29)], 6 € F if f* is affine,
g[z; + 6(21,22)], 6 € W if f* is concave, but not strictly concave.

3Qtherwise, by Theorem H.1 a’[V?f*]a < 0 for all & € R?, and f* is strictly concave.
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The most difficult one-dimensional sub-problem, i.e. the one with the least informa-
tion, is then obtained by searching for § € lin T'(F, f*) such that the Fisher informa-
tion is minimized. Following Theorem 3.7.2, the semiparametric information for B;

is therefore,
g, = }2}; E[z; + 6(2;, 2)]%
This implies that the function 6 solving the above optimization problem is

6; = proj(z:|H],

and from the following theorem, a projection on H is easily obtained.

THEOREM 3.7.3. Let 67 be the projection of z; on H. Then,
6; (u,v) = ~E(zi|z1 = 6,2, = v).

PRrOOF. By imposing sufficient differentiability on the density functions, E(z;[z; =
u,z; = v) € M. Hence, all that remains is to verify the orthogonality condition of the

classical projection theorem. But this is straightforward. O

From the above theorem, the efficient score S for computing the semiparametric
efficiency bounds of 8, is

I — E(Illzuzz)
S=¢ :

25~ E (2,121, 2)
The matrix (ESS$")! then gives the required semiparametric efficiency bounds for
By, when the true function f* is concave.
Furthermore, let K : [~1,1] X [~1,1] — R be a kernel satisfying the multivariate

version of Assumption 3.6.1. Then it is easy to see that
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P
me(u,v) = E(yjlz;; = u, 25 = v) = ) BeE(arj| 215 = u, 25 = v)
k=1

Li=1(y — ke 2 B)K(5E, 57)

Tim K= =2)

ﬁﬁ(uv v) =

?

where 7 is a least favorable curve, and fjg is a consistent estimator of ng. As in
Section 3.6, it may also be verified that 7jg and a%ﬁﬁ satisfy all assumptions regarding
rates of convergence etc. that an estimator of a least favorable curve has to satisfy.

The estimation problem yielding efficient estimates of B, when f* is concave, is

then
n P [ y nd 2
B, = argmin i Yi — Zp:mkjﬂk - Zi=1 Y — L z"j’g")K(ﬁTzu’ z,_anz_,,_)
n Z1g—2 Z2:—22;
BriBp =1 k=1 Ej:l K(_I#ZW L,TZJ')

3.8. Conclusion

Recent trends clearly indicate the growing popularity of semiparametric techniques
in econometrics. As econometricians incorporate restrictions of economic theory in
these techniques, they will gain even wider acceptance among applied economists.
This dissertation is a step in this direction, viz., the integration of economic theory
with econometric practice. Hopefully, it will be a stepping stone to the general theory
of efficient semiparametric estimation under shape restrictions. Such a theory will
be obtained when the class of shape restriction is extended to include all popular
restrictions imposed by economic theory on unknown functions. However, in this
chapter we have concentrated upon the two basic shape restrictions of homogeneity
and concavity.

Under certain regularity conditions, we find that the efficiency bound for any reg-
ular estimator of B3, is determined only by m, the smallest closed linear

space containing the tangent cone T'(F, f*). In fact, we show that efficiency bounds
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determined by T(F, f*) cannot be attained by any regular n!/? - consistent estimator
of B,. Hence if two different shape restrictions on F produce the same lin T(F, f*),
then the efficiency bound for any regular estimator of B, will be the same in both

the cases.

In Section 3.6 we computed the efficiency bound for 3,, when the unknown func-
tion f* was a homogeneous function of degree r. In order to do so, we had to obtain
orthogonal projections on the space of homogeneous functions to find the least fa-
vorable direction. The computation of the efficiency bound also helped us construct
an efficient estimator for 3,. This estimator was obtained by maximizing the profile
(or the concentrated) likelihood, and is based on an approach of Severini and Wong
(1992). The idea is extremely intuitive and is motivated by the fact that in para-
metric models maximum likelihood is efficient, leading to the possibility of it being
efficient in semiparametric models. The construction of this estimator required a two
step procedure. In the first step, the unknown function f* was estimated while the
finite dimensional parameter 3, was kept fixed. In the second step, this estimate of
f* was used to concentrate the likelihood, which was then maximized over the finite
dimensional parameter to produce an estimate of 3,. However, just any nonparamet-
ric estimate of f* cannot be used to concentrate the likelihood in the second step.
This is so, because approximation by an arbitrary estimator of f* may introduce a
bias in the asymptotic distribution for the estimator of B3,. But this bias disappears

if we estimate f* by a least favorable curve.

We showed that when f* was a homogeneous function of degree r, the least favor-
able curve was also another homogeneous function of the same degree. Once this least
favorable curve was used to estimate f*, we demonstrated that maximizing the con-

centrated likelihood led to an efficient estimator of B,. More importantly, since the
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least favorable direction in this case also turned out to be a homogeneous function,
there are gains from homogeneity for estimating the finite dimensional parameters.
Furthermore, as a by product of this research we have developed kernel estimators of
homogeneous functions. Such an estimator is used in Chapter 4 to develop a test for

homogeneity of functional form.

In Section 3.7 we computed the efficiency bounds for 8, when f* is a concave
function, and also proposed an estimator that achieved these bounds. This problem
is different from the previous one because unlike the space of homogeneous functions,
the space of concave functions is not a linear-space. It is in fact a closed cone with
strictly concave functions in its interior, and weakly concave functions on its boundary.
This characterization is important, because it implies that the location of f* inside
this cone, i.e. whether f* is strictly or weakly concave, will influence the efficiency
bound for B,. Moreover, this cone structure also creates some technical problems.
For instance, the notion of the derivative as a best linear approximation makes sense
only for linear-spaces or, in general for smooth manifolds (spaces which resemble
linear spaces at any given point). Unfortunately, a cone is neither a linear space nor
a smooth manifold. But since the space on which the projections are obtained is

linT(F, f*), these problems can be overcome without too much difficulty.

We find that when f* is concave, the least favorable direction, obtained by pro-
jecting the scores of the parameter of interest onto Tm, is just a twice con-
tinuously differentiable function. Hence if we restrict attention to the class of n!/2-
consistent regular estimators, computing efficiency bounds for 8, when f* is concave
is equivalent to computing efficiency bounds for B, when f* is just a C? - function.

That is, we cannot do any better in estimating the finite dimensional parameters

when we know that f* is concave. However, if the least favorable direction is ob-
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tained by projecting the parametric scores onto T(F, f*), then there is a possibility

of gains from concavity, but at the expense of losing regularity.
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CHAPTER 4
ESTIMATION AND TESTING OF HOMOGENEOUS FUNCTIONS

4.1. Introduction

Consider the regression model y = f(x)+e¢. In this chapter we obtain a test for the
hypothesis that f is homogeneous of degree 7, where r is assumed to be known to the
economist. Using the approach developed in Chapter 3, we show how to construct the
least squares estimator of f under homogeneity. Furthermore, we present the results
of a small simulation experiment which was conducted to study the finite sample

behavior of our test statistic.

Let us begin by analyzing the canonical regression

v = f(xi) e, i=1,...,n

The data {y;,x;}?, are assumed to be realizations of i.i.d. random variables (Y, X)

which take values in R X RP, where p > 2. Furthermore,

(i) The observations x, come from a distribution with compact support Sx C RP.
W.lo.g. let Sx = [0,1).
(ii) The distribution of x has a Lebesgue density p(-), which is twice continuously

differentiable.
50
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(iii) The error terms ¢ are assumed to have full support with E¢ = 0, and variance
02(t) = Var(¢|X = t) < co.

Moreover, ¢ is independent of x.
(iv) For some a > 0, E(|Y|?**]X = t) is a continuous function.

(v) The functional form of f is not known to the economist.

Thus far, the assumptions have been purely statistical in nature. Now suppose
that the data are generated from an economic model that imposes some additional
qualitative restrictions on the data generating process. We focus in particular on
shape restrictions, and assume that the function f is a C2-homogeneous function of

degree r > 0.
AssuMPTION 4.1.1. The degree of homogeneity r, is known to the economist.

As such models occur rather frequently in microeconomics, it is important to know
if the shape restriction of homogeneity is a valid restriction. This is crucial, since
most shape restrictions (including homogeneity) usually arise as a result of some op-
timization problem that economic agents are assumed to solve. Hence, if we reject the
hypothesis that f is homogeneous, we also reject the hypothesis that agents are as-
sumed to be solving an optimization problem that implied homogeneity of functional
form. Moreover, since homogeneity is a particularly tractable shape restriction, say
as compared to concavity or monotonicity, focusing on homogeneity may often lead to
a simplification of econometric analysis. For instance, suppose that f is the cost func-
tion for a competitive firm producing a single output with p — 1 inputs. This implies
that f is linearly homogeneous, increasing and concave in factor prices. Therefore,
rejection of homogeneity alone is sufficient to reject the hypothesis that the firm is

minimizing costs.
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In subsequent sections, we show how easy it is to estimate homogeneous functions.
We construct an estimator for f, when f is homogeneous of degree r, and show that
this estimator is optimal in the sense of being arbitrarily close to the least squares
estimator. Moreover, we also develop a fully nonparametric test for the hypothesis
that f is indeed homogeneous. Furthermore, we report the results of a simulation
experiment which was performed to study the small sample properties of this test.

The following notation is used throughout this chapter.

NoTaTION 4.1.1. (i) We denote vectors in boldface. Thus, x = (z,,2Z2,...,%p)
and x; = (z,j,Z2,..-,Zp;) denote the values taken by random variables X =
(X]_, Xg, ey Xp) and X] = (X]_'j, X2,j7 e 1Xp,j)°

(ii) F is the set of all C? functions on Sx, which are also homogeneous of degree r. O

Using this notation, the null and alternative hypotheses are:

Hyo: f=f forsome f° € F,

Hi:f#f foral ffeF.

4.2. Optimal Estimation of Homogeneous Functions

We start our analysis by approximating the least squares estimator of f under H,.
To do so, we determine the function #* € F that minimizes the L2 distance between
y and F. The least squares estimator of f under the null, is then arbitrarily close to
any consistent estimator of #*. This technique of estimating homogeneous functions

is an extension of the approach taken in Chapter 3, and leads to our first result.

THEOREM 4.2.1. Let 7* = argmin,.x E[y — f(x)]*. Then,

- A(zla:BZa"' ’zp)

= where
B(l‘l,zg,...,zp), !

T (Z1, T2y .., Tp)
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X1 Iy Xz Ty Xp_l Ip-1

A(zuzz,-.-,xp>=z;E<YX'r—’x—";;,..., %=
2r — ﬂ &_2:_2. Xp—l _ zp—l
B(zy,%s,...,z,) = E(X] | X e X T o ).

Proor. By imposing sufficient differentiability on the density functions, we can show
that #*(zy,...,2zp) € C¥(Sx). But this implies that 7= € F, since it is already homoge-
neous of degree r by construction. Then using the classical projection theorem, all that
remains is the verification of the orthogonality condition. To see that this holds, let g be

any element of 7. Then, it is easy to see that

GEYXIR %) X X Koo

n*(X)g(X) = DX, 1)
E(X2r|& %1 .. ,—ﬁ) X,’ X " X
XTE(Yg(Xy, X, p)li‘* %1, e )
= E (X7 % ,;: ) '

Now, by using iterated expectations it can be verified that E [x*(X)g(X)] = E [yg(X)].
Therefore, E [y — 7*(X)]g(X) = 0, and the orthogonality condition holds. [

Notice that under Hg, i.e. when y = f*(x) +¢,

z, D SO

r - Xl p—1
A(zy,. .. ,2p) = 2, E(z, f (x)+x;e|—=;,.._, X, =Tp-)
Tl Zp- Iy Xp-1 Tp-1
=$;f (_7 2= ) ( 2r| = TTyeens Xp- ==E )
Zp zp X P Zp
= ff(x)B(zy1,...,Zp),
using the fact that € is also independent of (%,’—;f,. . fﬁ‘-) Thus, we have

obtained the following result.

LEMMA 4.2.1. Under Hy, = = f~.
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Having determined 7~, it is now quite easy to construct a consistent estimator for
it. Since 7" is a ratio of conditional expectations, simply replace each conditional
expectation by its nonparametric analog viz. the kernel estimator. We then have the

following result.

LEMMA 4.2.2. Let, T;(Z1,...,Zp) = where,
B'(.’D[, 7zp)
- & T[T, ~ Ty /Ty Tpo1/Tp ~ Tp_1.i/Tp;
A(zy,. .. —_» 2T K P il%ei o Ze p = ZTp-15/Zpj
(z 1 Zp) p=l ;%zm ( a, a. )
P 1~ 2 g B1/Tp = T1,3/Tps Tp-1/Tp — Tp-1,/Tp.j
B (zy,...,z,) = e ;z”K( o yeres . )-
Then, 75(Ty, ... ,Zp) & T (T .. s Tp)-
REMARK 4.2.1. (i) Note that even though x € R?, the argument of the kernel K(-)

is an element of RP~!. That is, a homogeneous function on RP? is estimated after
reducing its dimension by one. This step has a profound consequence. As may
be seen from the proof of Lemma 4.3.2, it is this reduction in the dimension of
the nonparametric estimator that makes the distribution of our test statistic O,(1)
under Hy. For assumptions on the kernel functions used in estimation, see the next
section.

(ii) Since under the null hypothesis #* = f*, we can consistently estimate f* by 7.
Henceforth, we denote a consistent estimator of f* by f:, where fr=z

(iii) Furthermore, we can modify the proof in Appendix F to show that with a, =

O({*52}+7),

sup |f3(t) — f*(t)| = o, ({“g"}m) as n — co.
teSx

n

Note that since (lﬁﬁﬂ)ﬁ—r is the optimal rate of of convergence under Hg, f; is

asymptotically optimal according to Stone (1982). O
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4.3. Constructing the Test Statistic

In this section we construct a sample statistic for testing Hq. This statistic is based
on an extension of the approach used in Severini and Staniswalis (1991). In their
paper, Severini and Staniswalis developed a statistic for a parametric null hypothesis.
However, in our case the null hypothesis is fully nonparametric. To help understand
how our test works, we analyze in detail the behavior of the statistic at a fixed point.

But let us first describe some notation which will be used subsequently.

NoTATiON 4.3.1. Let fn(t) denote the kernel estimator of f at a fixed point t. That is,

gn(t)
Pn(t)
t— X;

. 1 &
gn(t) = == >y K(——)
"j:l n

fat) =

where,

sy Lo b X
pn(t)—nbﬁjz::lK( ) O

AssuMPTION 4.3.1 (KERNEL). The kernel function used above belongs to the class of
product kernels. That is, fort = (t1,...,t,), let K(t) = II?_, k(t;) be a real valued function
on RP. Here, each k(-) is real valued and satisfies:

(i) k(t) = k(-t) 20,

(ii) k() vanishes outside the interval [~1,1],

(iii) f! k(s)ds=1,

(iv) [, sk(s)ds =0,

(v) f_llszk(s)ds <oo. O

REMARK 4.3.1. Remember that when we estimate f*, the kernel K(-) is defined on R?~!
and not on RP. This is because, as explained in Remark 4.2.1, we estimate homogeneous

functions after reducing dimensionality by one. O
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AssuMPTION 4.3.2 (WiNDOw WIDTH). Let b, be a sequence of positive numbers (the

“window width”) such that b, — 0 and nb?, — co. [

REMARK 4.3.2. Similarly, when estimating f* the window width a, satisfies a, — 0,

and na®?"! — 00. O

NoTaTION 4.3.2. Let Ef (-) denote the expectation of (-) when the unknown function
in (-) is f. Since f is not known to the econometrician, so is E; . We therefore use E; to
denote the estimator of E; . This is obtained by replacing f with f. in the expression for
E; (1) O

We are now ready to construct our test statistic. First notice that in our case, the
density of the observations x; does not change. This coupled with the fact that we
are only interested in the functional form of f allows us to base our test statistic on
the numerator of its nonparametric estimator, fa. This is very helpful since now we
do not have to deal with ratios of random variables. So let {t,,...,t,,} be m fixed

points in Sx, and define the test statistic A, , as follows.

$- () T3(t) (o)

hme = 2 o)

'

i=1
= Z Am,n(tj)
i=1

where,

Tn(t) = ga(t) — ]Ej ga(t),

.
n

and 6%(t) is a consistent estimator of

o(t) = E(I6)n(t) | K du.

*
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REMARK 4.3.3. The notation A,,, indicates the dependence of the test statistic on the
m points at which it is evaluated, and the sample size n. This is important, since m may
be allowed to depend upon n. The case of m growing with n is treated in Section 4.6.
However, unless mentioned otherwise m is assumed to be some fixed positive integer that

does not depend upon n. O

To obtain the asymptotic distribution of A, », let us first analyze the asymptotic

behavior of T}, at a single fixed point t € Sx. We begin by writing

(nb8) 2 T,(t) = (nb5)"/2 [Ga(t) — By ga(t)] — Ba(t), (4.3.2)
where,
Ba(t) = (nb2)"? [Ef, ga(t) — By da(t)]

represents a bias term. We now have the following result.

LeMMa 4.3.1. Let o*(t;) = E (y°(t;)p(t;) fi-1.1p K*(n) du, for j =1,...,m. Then,

(nbﬁ)llz [gn(tl) - ]E! gn(tl)] g 0 0’2(1:1) e 0

— |

(162)72 [Gn(tm) = By Gn(tm)] o Lo ... o%tw)

PRroOOF. See Appendix I. O

Furthermore, let § be any function in C?(Sx). Then the next lemma is used to
determine the asymptotic behavior of B,(t), both under the null hypothesis Hq, and

under a sequence of local alternatives given by

Hin: f(£) = f7(t) + %.
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LEMMA 4.3.2. Using the notation given above,

_fo(1) under Hg,
Ba(t) = {—p(t)ﬁ(t) + o(1) wunder Hy,.

PROOF. See Appendix J. O

(4.3.3)

Using these two lemmas we immediately obtain the following result.

THEOREM 4.3.1. With T,(t) as defined in (4.3.2),

X 4 N(0, o3(t)) + 0,(1) under Hy,
VabRTa(t) {N(p(t)a(t),aﬂ(t)) +0,(1) under Hi,.

Now let G(t) be a consistent estimator of o(t). Then using Slutsky’s Theorem and

Theorem 4.3.1, we have that

VR Ta(t) _ o(t) Vabh Ta(t)

a(t) — a(t) at)
N(0,1)+ 0,(1) under H,,
p(t)é(t)
N( at) 1)+ 0,(1) under Hy,.
204152
But this implies that for a non-centrality parameter v = %%()i)-,
(nb?) T2(t) 4 x?+0,(1) under Hy,
G2(t) xi(v) + 0p(1) under H,,.
204 \62(t.
Hence, we have shown that if v; = Mt—’l, where j =1,...,m, then
20%(t;)
i \_ (nbR) TX(t;)
Amalt) = 570,

d | x2+0,(1) under Hg,
x3(v;) + 0,(1) under Hy,.

But from Lemma 4.3.1 we have that Am,n(ti) and Am‘n(tj) are also asymptotically
independent for ¢ # j. Therefore, we can finally obtain the asymptotic distribution

of the sample statistic A,, , which is given by the following theorem.
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THEOREM 4.3.2. Let v = Y[, v;, where v; = 207,
i

m m 207%(t;
A ( bp) n\"Jl
= Am,n t
£ fmel) = 2 oy
a Jx& +o0,(1) under Ho,
x5 (v) + 0p(1) under Hy,.

4.4. Simulation and Computational Procedures

To study the finite sample properties of the proposed test, we performed a small
simulation experiment. In order to simplify things, we restricted our attention to

p = 2, i.e. covariates taking values in R2. The chosen data generating process was

y = f(z1,z2) + €, where,
z? + 23 under H,
f T1,Z9) = e-’:l"*"-';
(21, 2) 2+ 23+ -7—;!—531— under H,,
21,2, < UIID(1,2)

e £ N(0,1).

REMARK 4.4.1. The function (z,z,) ~ z} + z3, which is homogeneous of degree 2,

2, 2
T1+23

nb?

n

was chosen arbitrarily. Similarly, the choice of

as the local perturbation was also

arbitrary. O

The statistic A,,, was evaluated at m = 25 points, obtained by constructing
a 5 x 5 grid in R2. The (z,y)-coordinates of the grid came from the sequence
{1.1,1.3,1.5,1.7,1.9}. Note that computing Tp(t) = gn(t) — E;. gn(t) in its present
form is not feasible, since we do not know how to select an optimal bandwidth for g,.

However, calculating T, (t) becomes simplified if we notice that:
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Ta(t) = ga(t) — Ef, ga(t)

.
n

= fn(t)ﬁn(t) - E'; gn(t)'

This is easy to compute, since we can now choose optimal bandwidths for f,, and

Dn by cross validation.

REMARK 4.4.2. (i) The estimator of the density, denoted by p,(-), was computed
using the Gaussian kernel. The use of a Gaussian kernel simplifies the form of the
cross-validation function, which is used to obtain the optimal bandwidth for the
density estimator.

(ii) The kernel used to compute the nonparametric estimators fa and f;, was the
Epanechnikov kernel

on - 2

chosen for its second order optimality properties. Note that for the product

Epanechnikov kernel,

1
/ K(u)du = II2_, / K (u;) du
[~1,1]? -1

= 0.6°.

(iii) The window width used in f:, was also chosen by cross-validation. [

To compute E;. §n(t), notice that
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Es- gn(t) = Ey- {%p- i?/jK(t;—f)}

=é - (K ()
= Z E{KC "’)E,- (351}
1 ~ X;

= BT ()
— %

Yz (x;)}, and was simulated using the algorithm

Hence E;. §a(t) = E {K(
in Table (4.7.1). Furthermore, a’(t) was obtained by utilizing the fact that

a?(t) = E(32[t)p(t) / K?(u) du
={f2(t)+03(t)}p(t / | Ki(u)du.

(-t

And therefore,

52(t) = {F2(t) + 62()}pa(t) / L KW, where,

L DK - )
62(t) = o) .

4.5. Results

The entire code for this simulation was written in GAUSS, and the results for 500

repetitions are presented in Table (4.7.2). As may be seen from this table, the test

over rejects under Hy. However, it has excellent power characteristics. Some reasons
that may help explain this poor performance under the null are:
(i) Inaccurate choice of m, the number of grid points at which the test statistic is

evaluated.
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(ii) Poor location of the grid points, which may destroy the independence of the indi-
vidual terms in Ap, ,.

The first problem may be resolved by allowing m to be a function of n, as in Severini
and Staniswalis (1991). As far as the second problem is concerned, one could pick the
m evaluation points and the bandwidth b, such that, mb2 < 2-7 for all n. For more
on this, see Section 4.6. Of course, there is always a possibility that the test statistic
developed in this chapter has poor finite sample performance. If this is indeed the
case, then we need to look at modifications of this statistic which yield better finite

sample approximations to its asymptotic distribution.

4.6. Letting m Grow with n!

In Remark J.1 it was pointed out that local alternatives for which é(t;) = 0, where
t = 1,...,m, are not detectable. Such local alternatives can be made uninteresting
by letting m grow with the sample size n. In this section we develop the asymptotic

theory for A, n, when m depends upon n. But first, some additional notation.

NoTATION 4.6.1. (i) Let m, denote a sequence of increasing positive integers for
n=12,...,00.
(ii) Foreach n,let t, ;,tn2,...,ts m, denote a lattice of fixed points in Sx. As n — oo,

these points get dense in Sx.

(iii) Let z,(t) = (nb2)*/? w;g:;'m’ﬁ"(m. Furthermore, let 2, ; = zn(tn ;) forj = 1,... ,m,.
Then z,; is a triangular array of random variables with mean zero. O
The grid {tn1,... ,tnm.} in Sx = [0, 1]P is created by choosing m!/? points in each
dimension. These points are chosen such that the distance between adjacent points

in each dimension is m7!/?. It is then easy to see that z,; is independent of zp ;4.

'T am grateful to Professor Severini for giving me access to some of his unpublished notes.
Section 4.6 is based upon these notes.
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if m,b2 < 2-P. That is, if m, — oo at a slow enough rate. Therefore, to ensure row
independence of the triangular array z,;, we make the following assumption. This

assumption will allow us to use a CLT for triangular arrays, later on in this section.
ASSUMPTION 4.6.1. Foreachn, m,b% < 5. In particular, this impliesm, = o(b;?). O
Apart from the assumptions made earlier, also assume the following.

ASSUMPTION 4.6.2. Asn — oo,
(i) my/?(nb5)"/? sup, |Ej. gn(t) — Ey gn(t)] 20,
(if) mY/2 sup, [5%(t) - o=%(t)] 2 0,
(iii) ml/? sup, |E 22(t) - 1| & 0,
(iv) mY/? sup, [EZ3(t)] 20,
(v) mi/? sup, [E zi(t) - 3| =0,

(vi) For some £ > 4, sup, sup, E|z,(t)[* < o00. O
AssuUMPTION 4.6.3. The sequence of local alternatives is given by,

() = Fo 8(t)
n f(t) —f (t)+ mrl‘/«i\/;b—ﬁ'

Here, §(-) € C?(Sx) such that sup, |6(t)] > 0. O

To make explicit the dependence of m upon n, the test statistic in (4.3.1) is hence-

forth denoted by A, .. That is,
_ Z (nbR) T2(tn,;)

py 6%(tn,;) ’
where 7, is defined as before. The asymptotic distribution of A, . under Hy and

H,, is then given by Theorem 4.6.1 and Theorem 4.6.2, respectively.

THEOREM 4.6.1. Under H,,

Am n— My d
——&——“'—’NO,I asn— o0.
T (0,1)
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PROOF. After some tedious algebra, Am,» = AL | + 0,(m}/?) where,

A

b U [Ga(tn,;) = Epe Gn(ta,))?

e G7(tn.;)

Some more algebra yields

+ 0,(m'/?).

AD = nb} Z?:nl[gn(tn.j) —E;. gn(tn,j)]2
i o2(tn;)
Therefore, Am, n — Mn = ;o (22 ; = 1) + 0,(m%/?), and,
Am..,n — My — Z;‘n;l(zrzx,j — 1)
2m, \/2Tn
Hence, it suffices to show that
Mp 2 -
Sn _ Zj:l(zn,j 1) _(L N(O,l)

v2m, - Vam,

it may also be seen that

E S, = o(mL/?)

Var S, = 2m, + o(m'/?).

S, —

Therefore, 7‘-—\7%—51 = -\7%%" + o(1), which implies that

S. _S.~-ES, +o(1)
V2m,  /Var§,

< N(0,1) + o(1).

Hence, by utilizing Slutsky’s Theorem,

+ 0p(1).

64

From Assumption 4.6.1, S, is the sum of a row independent triangular array. Now a CLT

for triangular arrays (Durrett 1991) yields, Jx=ia <2, N(0,1). After some computations



Am,.n_mn +O (1)
Vam, ¢— ’
LN N(0,1).

a

THEOREM 4.6.2. Under the sequence of local alternatives H,,,

Am,.,n — My

S A, S N(0,1), asn — oo, where,

1 Q2 6%(tn,i)P°(tn,s)
B \/—mn ,; o%(tn;)

ProoF. Follows from the proof of Theorem 4.6.1 by noting that under H,,,

1 & 6%(ta,)PP(tn )

mil? = 72 (tn)

Amon = AD) 4+ + o,(mL/?).

a

Therefore, as n — oo and {tn,1,t52,- .- ,tn,m,} Decome dense in Sx, any test based

on A, n has positive power under Hj,.

4.7. Tables for Chapter 4
TABLE (4.7.1). Algorithm for Simulating E. ga(t)

(i) Generate sample: {xi,... ,x,.}
(ii) For each x;, compute: K( x, )2 (x;).
(iii) Take average: + Y_ 1K( )f (x;), and divide by &2.

TABLE (4.7.2). Simulation Results (m = 25, Repetitions = 500)

Sample Size # Rejections (Hy) Size of # Rejections (H,,) Power of
(n) (5% Level) Test (5% Level) Test
106 0.21 500 1.00
100 94 0.19 500 1.00
250 60 0.12 500 1.00
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APPENDIX A
TANGENT CONES

In this appendix we collect some results about tangent cones. These results are
available in standard mathematical literature but seem to be scattered all over the

place. We begin with a definition from Krabs (1979, Page 154).

DEFINITION A.l (TANGENT VECTOR & TANGENT CONE). Let £ be a normed vector
space, A a non-empty subset of £, and z, any point of A. A vector h € FE is called a
tangent vector to A at z, if there is a sequence z,, of elements of A and a sequence A, of
positive real numbers with lim,_.o, z, = z¢ and lim,_o Ap(Z4 — o) = h. Furthermore, let
T(A,z,) be the set of all tangent vectors to A at zo. Then T(A, z,) is called the tangent

coneto A at zq. O

REMARK A.l. (i) Since T(A,z,) certainly contains the null vector of E, it is not
empty.

(i) In the above definition, z, is necessarily a point of closure of A. Moreover, in
general T(A, z,) is not a convex set.

(iii) Notice that if A C B and z, € AN B, then T(4,z,) C T(B, zo).

(iv) We can also show that if zo € ANint(B), then T(AN B,zy) = T(A,z0). O

We now look at some properties of T(A, zo).

66
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LEMMA A.l. T(A,z,) is a cone.

Proor. Let h € T(A,z,). Therefore, there exists a sequence of real numbers A, > 0
and a sequence of elements z,, € A with z, — z¢ such that h = lim,__, An(z, — Zo).

To show that T'(A, zq) is a cone we have to show that ah € T(A, z,) for all @ > 0. Now,

notice that,

ah = oznli_.nt}o An(Zn — zo)

= nh_ngc arn(z, — Zo)

JLm pn(2a — Zo),

where p, = al,. This shows that there exists a sequence of real numbers g, > 0, and
a sequence of elements z,, € A with z, — z¢ such that ah = lim,_. gn(za — o). i.e. ah
is also a tangent vector at z,, which implies that ah € T(A, zo). Therefore, T(A, z,) is a

cone. []
LEMMA A.2. T(A,z,) is closed.
ProoF. See Krabs (1979, Page 154). O

The next lemma gives a sufficient condition under which T'(A4, z,) is a convex set.

LEMMA A.3. Let A be a non-empty convez subset of a vector space E. Then, T(A, z,)

contains A — o and is convez.

Proor. We first show that T(A, zo) contains A — zq if A is convex. Solet A € A. Now
define the sequence h, = zq + L(h ~ z¢), i.e. hy = 2h + (1 = +)zo. Clearly, h, € A since
A is convex. Also, h, — z¢ and n(h, — zo) = h — zo. Therefore, h — zo € T(A, 7o), and

since h was an arbitrary element of A, this implies that A — zo C T(A, zo).
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We now show that T(A, zo) is convex. Let hy, hy € T(A, o). Then there exist sequences
zl,z2 € A with z} — 20,22 — z,, and sequences of positive real numbers pl,p2 such

that h; = lim,—e pl(zl — 7o) and hy = lim,_.o #2(z2 — 74). Now, let 0 < A < 1 and

define h = Ah; + (1 = A)h,. Then, h = lim,, . 6,(2, — Zo), Where,

b = ’\lurl: + (1 - A)/'erx'l and,

- Ay, 2l (1 =)yl 22
Mg+ (L= ™™ " Al +(1-Np2 ™

Zn

Now 6, is a sequence of positive real numbers, and z, € A since A is convex. So if we
can show that z, — z, we would be done, since then A would be an element of T(A. z,).

We show this as follows. Notice that,

_ Aty 1 (1= Api 2
I = 2l = | gt - 20+ g
Ay (1= Aes
< n 1 - n 2 -
A 1-A
=2 et el + — L2 gy
A+ (l-A) (I-A)+ Az

And since both the coefficients are bounded by 1, we have

22 = zoll < llzr = zoll + llz7 ~ ol

-0,
since ||z} — zo|| — 0, and ||z2 ~ zo|| — 0. Hence we are done. O

Using the properties given above, we get the following characterization of a tangent

cone.
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THEOREM A.l. Let A be a non-empty convez subset of a vector space E. Then, T(A, z,)

is the smallest closed cone containing A — z,.

PRroOF. By the previous theorems, T'(A,z,) is a closed cone containing A — z,. It
only remains to show that it is the smallest closed cone containing A — z5. So let C(A —
zy) be any closed cone containing A — 4, and suppose that A € T(A4,z,). Then h =
lim,_c An(Zn — Zo), where A, is a sequence of positive reals and z, is a sequence of
elements in A approaching z,.

So define h, = A (zp ~ zo). Clearly, z, — 2o € A — zo. But since A —zo C C(A — z4)
we have that z, — zo € C(A — z¢). Now, the fact that C(:) is a cone implies that
hn = An(Zn ~ o) € C(A — z4). i.e. h, is a convergent sequence in C(A — zo). But since
C(A — zg) is closed, the limit A € C(A — zo). This implies that T(A,z,) C C(A — z,).

Note that T(A, z,) is also convex since A is a convex set. [

Using this theorem, we get the following important result about T'(A, zq), when A
is itself a cone. This is a result of Aubin and Frankowska (1990, Lemma 4.2.5, Page

143).

THEOREM A.2. Let A be a non-empty conver cone in a vector space E, and z, € A.

Then, T(A, Io) = A - R++IO.

PROOF. = Let h € T(A, z,). Therefore, there exists a sequence of real numbers A, > 0
and a sequence of elements z, € A with z,, — zg, such that A = lim,_ An(Zn — Zo). But
AnZ, € A since A is a cone, and clearly A\,zq € Ry ,z,. This implies that Az, — A;z¢ €
A — R,,zg, which shows that A = lim,_e An(Zn — Zo) € A — Ry +Z0-

<= Let z be any arbitrary element of A, and A > 0 any element in R, .. If we could

show that z — Az € T(A, z4), we would be done since this would imply that A —R . zo C
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T(A,zo). Then taking the closure on both sides, and keeping in mind that T(A, z,) is
closed, we would have A — R, z, C T(A, zo). So we show that z — Azy € T(4,zo).

Since A € R, 4, choose a £ > 0 such that At < 1. Then since A is a convex cone, we have
that (1 — At)zo +tz € A, i.e. 2o+ t(z — Azo) € A. This implies that ¢(z — Azy) € A — z,.
But we know that T(A, z,) contains A — z,. Hence, we have that t(z — Azg) € T(A, zq).

But since t > 0 and T(A, z) is a cone, this implies that z — Azg € T(A4,z,). O

COROLLARY A.l. Let A be a closed linear subspace of a vector space E, and let t, € A.

Then T(A, zo) = A.

Proor. Follows from the previous theorem. [J
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APPENDIX B
PROOFS OF RESULTS IN SECTION 2.7

REMARK B.1. The following proofs are from Severini (1987), with slight modifica-

tions. [

Proor. [Theorem 2.7.1] Clearly B, = (b0, 820 - - : Bio + t, Bi+1)0, - - - »Bp) is an ad-
missible curve in B. Then since 7g is a least favorable surface, 73, must be a least favorable

curve for estimating B,. That is, it must minimize E [%Z(B,,np‘)l,ﬂ,]z. Now,

d _ & 0By ma,) dBi(t) | OBy, ma,) d dBi(t)
Et-f(ﬂnﬂp,)—z 35, 7 o Z(dﬂ,—(t)nﬂ') 7

p
i=1 =1

/4
_ 9B 1s,) + 9UB., 1s.) ( d ) implying,

9B an  \dg ™
4 _ 04By,ng,) , 9Bo;7g,) ( d )
dte(B“ T,ﬁ,)lt:O - 3,3, + an (E{"lﬂo .

Therefore, minimizing E [££(8,,7s,)|¢=0]® is equivalent to minimizing

g [3g(g%inpu) + Bl(ﬁao;%o) (_d_dﬂ_i_nﬁc)]2 ~F [63(%2730) + af(ﬁg;}ﬂﬁn)éi]z |

where é; € linT(F, f*) fori = 1,...,p. Hence the minimizer §; satisfies

ae(ﬂo’ﬂﬁu) 3[(60,1730) . 35(;30777;50) N

forall 6 € inT(F,f*),and ¢ =1,...,p. O

71
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ProoF. [Theorem 2.7.2] => So suppose that the result is true. Then since it holds
for all (6y,...,6,) € linT(F, f*) x ... x linT(F, f*), it also holds for (6,,0,...,0) €
LinT(F,f*) x ... x linT(F, f*), because 0 is always an element of the tangent cone.

Therefore,

9By, ma,) , 9(By,mp,), d 9By, M8,) ¢ \ _
B (S T e =) =0,

But this implies that §, is the least favorable direction. The same holds for 6, ..., 6,
and we get that §* = (§;....,6p) is the least favorable direction. Therefore, 75 is a least
favorable curve since 6™ = %'ﬂplp=g° is the least favorable direction.

<= Now suppose that 7g is a least favorable curve, and let the least favorable direction

be § = (ﬁ,—lnﬁb:po, ceesy d—l‘;’-n,3|ﬁ=ﬁo). Then from Theorem 2.7.1, § satisfies

3!(,3,173,,) Bf(ﬂo,npo) - ae(ﬂanﬁo) —
E | )] ot =

for all §; € linT(F, f*), and 7 = 1,...,p. Summation over ¢ then yields the required

result. O

Proor. [Theorem 2.7.3] => Let Iz, be given by

0U(By, Ns,) 0By Ns,), d 80(By Ne)  O€(Bosre), d . '
E( B T o ag” ))( B T o (dﬁ'\‘“))’

Also assume that a'(Ig, — I)a < 0 for all « € RP. We show that Ag is a least favorable

surface. Now since the given condition holds for all & € R?, choose @@ = e; the j** unit

vector in R?. Then e}(lg, —~ I)e; < 0 becomes,

9L(Bo, As,) , 9By, Ns,), d ]2 [ae(ﬁo”\ﬁ ) , 9UPBy:As,), d

o (+] < ] o

E[ a8, T ax  tag )| < a5, T ox  \ap )]

for j = 1,...,p. This! implies that 2t-@"—)l‘lﬂl(d‘,, Ag,) is the projection of w"ﬁ—"’ﬂ—) onto

1Since both Ag and 7g are admissible curves in linF through f*, the tangent vectors %/\50
and d;g}r)ﬁo, are both elements of lin T(F, f=).
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the space

9B, As,) (7
—e (FnT(F, 7))
Therefore, ;g—’z\ﬁo is the least favorable direction for 7 = 1,...,p, implying that Ag is a

least favorable curve.

<= Now suppose that 7g is a least favorable surface in {:nF, and define

Is, =E (df(ﬁ:;énan)) (dl(g;énﬁo)):.

Then we show that a'(Ig, ~ I < 0 for all @ € RP?, where [ is the Fisher information

matrix corresponding to another p dimensional parameterization of 7.
So let B, = B, + ta. Clearly, 3, is an admissible curve in B through 3,, with tangent
vector a. Then since 7g is a least favorable surface, ng, must be a least favorable curve

for B,, i.e. 7a, minimizes E [Mh_o] But by the chain rule,

de(ﬂv’lls,)l [ag(ﬁaoénﬁo) . 82(580;177/30) (diﬁ-nﬁ“)]’ [dT'E:‘-L_O]

= Sg &, which implies that,
df(ﬁ, T’ﬁg) 2 _ ' ! /
E [—-dt |t=0] =E (55,2) (Sp,e)
= o'E Sﬁo Séna
=ad'lp a,
and we get that g, minimizes a’'lg a. Now if Ag is any other admissible curve in linF,

we have

2
E [dE(B:i;,\B‘)[t=O] = a/[a’

where [ is the information corresponding to Ag . But since 7, was a least favorable curve,

it minimized a'lg a,ie. a'lga < a'la,foral e € R?. O
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APPENDIX C
PROOF OF THEOREM 3.4.1

The proof of Theorem 3.4.1 requires the following definitions.

DeriniTION C.1 (LAN CONDITION). Let
L"(ﬂn’ 7ﬁ,.) = Ze(ﬂ7 V8.5 Xiy yt"zi)v
i=1
where v is any curve in C*(Z) such that yglg=g, = f°. Also let £, = L.(8,,7s,) —
L.(By, 7). Then for sufficiently large n,

d

_ o-1/25 @
La=n 6dﬂ

1.,
Ln(ﬁov 750) - 56 106 + OP(]')’
where [ = E[j‘ge(ﬁo’ 78, )][%Z(ﬂo, ‘750)]'- a

The following lemma gives sufficient conditions under which the LAN condition

holds.

LemMA C.1. With v as defined above and i,j = 1,...,p, assume that for all B € R
the loglikelihood B — £(B,vp; X, y,2) satisfies,
(i) E d%ll(,ﬂ,'yﬁ; x,¥,z) = 0.

(ii) E[755:48:18: %, 9,2)] + E[35:4(B, 783 X, ¥, 2) 35:4(8, 181 %, ¥, 2)] = 0.
74
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(iii) Let Q be the measure induced by (x,y,z). Then for i = 1,...,p, the functions

75-0(~; B, 7p) are linearly Q - independent. That is, if

e d
ar—U(Xi, Y&, 2&; B, =0
kzz:lkdﬂj(kyk kﬁ‘m)

for Q - a.a. (x,y,2), then ax = 0 for all k.

(iv) There ezists a neighborhood Ny of B,, such that for all (x.y,z) the map B —
Hf:%f(ﬂ,'yp;x, Y,2) is continuous on Ny, and,

(v) E supgen, | 7555408, 18: %, 9,2)| < 0.

Then the LAN condition holds.
ProoOF. See Pfanzagl (1994, Page 265). O
We now prove Theorem 3.4.1.

ProoF. [Theorem 3.4.1] We obtain a proof by contradiction. So let Assumption 3.4.1
hold, and suppose that there exists a regular n'/2 consistent estimator for B, that achieves
the efficiency bounds when the parametric scores are projected onto T'(F, f*). Let 3,
denote this estimator. Then as a consequence of the the convolution theorem (Pfanzagl
1994, Page 289), ,B,, is asymptotically linear. That is, there exists a curve Ag € F satisfying

Aglg=p, = [, such that

2B, - By) =n7 Y a%f(ﬂo, A, i Xiy ¥irZi) + 0p(1), (C.1)

i=1

where I, is defined in Assumption 3.4.1. Notice that since ﬁn achieves the lower bound

I;', by Theorem 2.7.3 Ag is a least favorable curve in F. In particular, this implies that

d d !
b= E [5tBe 0| [ 7568 39,)] -
But as the LAN condition holds for a larger class of functions, it implies that for all

(8,78) € RP x linF such that Y8, = f,
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2 = n—1/2 26, e(ﬂoa 7301 Xir Y, Z,) - -6 [L6 + op(l) (Cz)

where,

I =& [ 756B070,)| | 7545078, )|

From (C.1) and (C.2) it is clear that under 3,,

nt?(B, - B,) > N(0,I;") and,

g, 4 N(—%6’1L6,6'IL6).
Therefore, by using the Cramér-Wold device given in Proposition H.1

() 0 (i o)

with, { = I;'E [%8(60, Ag, )] [;%Z(ﬁo,'ypu)]lé. Hence by LeCam’s Third Lemma (Rieder
1994, Page 44),
n* (B, - B,) < N(L'E [-—d—l(ﬁ A )] [if(ﬁ ¥ )]16 Y.
n 0 5. 2 dﬂ 0B, dﬂ 0y 1Bo y 42
And since n'/?(8, — B,) = 6, this implies that
nllz(ﬁn - IBn) = nllg(ﬂ-n - .30) - nllz(ﬁn - ﬂO) ﬁi' N (”‘7 [2—1) s
where the bias () of the asymptotic distribution is
b= 18 [ty 3a,)] [0, 66
2 dﬂ Q0 ﬁo dﬁ [1}} 0

Therefore, B, is a regular estimator iff its asymptotic distribution under 3, does not

n

depend upon §. That is, Bn is regular iff g = 0. But,
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p=06 I'E [ 20608 [156B018)] ~Tps=0 (C3)
= [ 200 30,)] [ 15480 0,)] = F (C.4)

o E [£60000)] [540078)] =E [56800) [d—(;-l(ﬁo,/\p,,)]l(cj)

oK { 2 UBys Na,) [ dﬁl(ﬂo,'yﬁo) - %@(ﬁo,,\ﬁo)]} ~0 (C.6)

o 8 { g5t [P (Gm.) - =552 ()]} = ()
=

o F 3f(ﬂo,«\a., 35(551\%0) (da; ,\ﬁo)]
#50 ) Sl (8] 0 e
S F [BE(%)bAﬁ°) + 66(653\/\%) ( % Aﬁo)] 35(%:;7@,) ( 3% . ﬁo) -
E [ae(ﬁgg\,,o) N ae(ﬂgj\,\po) ( % /\ﬂo)] ae(ﬁgl,\/\ao) ( % /\ﬁo) _ O(C |
9
o E [61.’(,5;2)\;30) + Bl(ﬁg:\z\ﬁo) (%,\po)] ai%ﬂ (%7‘,0) =0 10
ok [ae(%,éxpo) N ae(ﬂgx\po) (d% Ap°>] W (%m,) =%

REMARK C.1. We now explain briefly how the above equations are obtained.

(i) (C.5) simply follows from the definition of I,.

(ii) To see how (C.7) is obtained from the previous equation, notice that

a¢(B,, 9¢(B,, d
g(ﬂo’ 7ﬂu) (ﬁaﬂ‘ﬂ"o) + (ﬁa(),\7ﬂo) (25730) and,
_ 9By, ’\ﬁ.,) 0¢(B,, ’\ﬁo) i
d_ﬁ'e(ﬂov’\ﬁo) - aﬂ + EY (dﬁl\ﬁO) -

However 248 ;g"ﬂ) = B g;"'), since the scores with respect to the parameters of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

interest are equal.
(iii) Now 3%/\,30 is the least favorable direction in T'(F, f*), and (C.10) follows from the

the previous equation since

. [ae(ﬁgéxpa) N "’“f’g;A"“) ( % Aa.,)] %f%a_) (E%ABO) =0.

By Theorem H.3,this equation is just one of the conditions which are necessary
and sufficient for projecting W+b“°l onto T'(F, f*).

(iv) Finally, (C.11) follows from the previous equation because W%'\’n—) is the restric-
tion of the Fréchet derivative 9l(pT":’ﬂl to T(F, f*).

Hence, Theorem H.2 and (C.11) imply that ;‘%/\,30 € xP_T(F, f*) is the unique solution

to the optimization problem

[0UBy, Ag,) 0By, As,) 0By, A,) . 0By, Ag,)
E[ B ) (5)” 8 T ox (f)]

This means that even when we search over a bigger space lin T'(F, f*), the least favorable

1

inf +

gexP_linT(F,.f*)

=1

direction %/\ﬁn is found to lie in the strictly smaller space T(F, f*). But this violates
Assumption 3.4.1, implying that p # 0. Hence under 3,, the bias in the asymptotic
distribution of n'/2(8, — B,) depends upon &8, which implies that that B, is not regular.
But we had started with the assumption that 8, was regular. Hence we get a contradiction.
Notice that dependence upon 6 is considered undesirable for the following reason. For some
0 < @ < 1/2 choose § = o(n*) so that 3, — B,, while the bias u explodes to oo. But

this implies that the sequence n'/2(3, — B,) is not even tight, much less regular. O
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APPENDIX D
PROOFS OF RESULTS IN SECTION 3.5

PRrOOF. [Theorem 3.5.1] First notice that B, is measurable since L.(8,7s;x,y,2)
is continuous in B, and is a measurable function of (x,y,z) for each 3. Now let a(3) =
E¢(8,ns; X, y,2). Then by Assumption 3.5.1, a(8) < a(B,) if B # B,- Now by the WLLN.
1L.(B,ng) £, 4(B) for each B € B. In particular, this implies that 1 L.(8,7ms) = O,(1).

Furthermore, by using the mean value theorem for any 3,,8, € B,

1 1> n
;ILn(BU 773,) - Ln(.Bm T’ﬁ,)i = ;Ize(ﬂn nﬂ‘;xj’ yjﬁzj) - ZZ(B‘.H T’ﬁ,;xja ijzj)l
j=1 ji=1

1
S EZIe(ﬂhnﬁl;xja ijzj) -e(ﬂzvnﬂ,;xjv ijzj)l
Jj=t

S An”ﬁl - ﬁ2“1

with A, defined as

ae(ﬁv Ul xjv yjazj)
AB;

1 &
;ZZ sup

j=1i=1 BmEBXH

n

d 1
+ su —_— zZ)|— su
pB.zeE?led.BiT’ﬁ( )ln;ﬁ.ﬂegx’ﬂ

aU(B, s X;, Y;» ;)
an

?

79
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and A, = Oy(1) by Assumption 3.5.2. Hence the modulus of continuity

w-,':Lu((s) sup -an(ﬁlv T’B,) Ln(ﬂza nﬁ,)l g An6
18, -B,ll<s M

Now choose any &,€ > 0. Then since L,(8,ng) = O,(1), if we can find a § > 0 such

that Pr{ws, (6) > €} < £, ~L.(B,7g) will be tight in C(B). That such a § exists, can be

seen as follows.

First notice that since A, = O,(1), there exists a M, such that Pr{|A.| > M} < &.

Now let § = ¢/M;. Then,

Pr{wy;. (8) > €} < Pr{dn6 >
| = Pr{d, > ¢/6}
= Pr{d, > M}
< Pr{|Aal > M}
<&

Hence, £ L,(8,ng) is tight in C(B). This implies that for any subsequence {n'} C {n},

there exists a further subsequence {m} C {n'} such that

1 :
~Lm(B,78) = a(B)  in C(B). (D.1)
Now, foreach B € B,and n e H

_|Lm(ﬁynﬁ)— m(ﬁ Tlp Z (ﬁ’ﬂa»x,,y;,zj Ze(ﬂ,ﬂpyxp!/],z,)l

i=

3|'—'

1

<L 3€(ﬁ,n;xj,y,-,zj)

on
;pl a(Z) ~ 1a(z)| B,

[
3

Sgp I9a(z;) — na(z;)]
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with Bn, = L 370 supg, Iw,‘;ﬁﬂﬁ[. Then since B,, = Op(1) by Assumption 3.5.2

and supg, |98(2) — 1g(2z)| = 0,(1) by Assumption 3.5.3, we have
1 R
Sgp "T;;ILm(ﬁv 7’5) - Lm(ﬁv nﬁ)l L 0. (D2)
Also notice that from (D.1)
1 R P
sgp I;Lm(ﬁvnﬁ) - a(ﬂ)l - 0. (D3)

Therefore, by (D.2) and (D.3)

SUp Lo (B, 79) = a(B)] < 5P |==Ln(, ) = 7 Lm(B. )

+5up | = Lon(B, 75) - a(B)| (D.4)
g m

L.
But this immediately implies that
1 -\ P =
sup —Lm (8, fig) = sup a(B) = a(By)- (D.3)
g m B

Furthermore,

6(B) = 6(Bo)| < |=Lon(Brs73,) — a(Bi)

1= LB ,) = a(Bo)] (D6)

Now since (D.4) holds for all B8 € B, |#Lm(ﬂ.m,f)‘;m) - a(B,,)| % 0. Moreover, since
LB 75 ) = supg Lm(B,7g), (D.5) implies that LLn(B,.,75 ) = a(B,). Following

these observations (D.6) is reduced to |a(B,,) — a(B,)| 2 0, i.e.

a(B,) & a(By). (D.7)
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Now the identification condition implies that for any ¢ > 0 and any 8 # 8,, there exists

a neighborhood Ng of B such that

inf |a(B) - a(Bo)l > . (D.8)

But this means that

Pr{B,, € Ng} < Pr{la(B,) - a(B,)| > €} — 0 (D.9)

by (D.7). So let N, denote any neighborhood of B,. Notice that the collection of neigh-
borhoods {Ng: 3 € B,B # B,} is an open cover of B\ Ny, with Ng satisfying (D.8). But
since B\Np is compact, there exists a finite subcover {Ng ,...,Ng }. Therefore, from

(D.7) and (D.8)

Pr{B,. & No} = Pr{B,, € B\No}
< Pr{ﬁm € Uf:lNﬁ.}
k
S ZPI’{,B.," € IVﬁI}

i=1

— 0.

And this implies that ,Bm 2, B,, as m — co. But since B, does not depend in any way
upon the subsequence {m} C {n'}, this convergence holds with m replaced by n. That is,

B, 2B, asn—o0. O

For proving asymptotic normality of 3,, we need the following uniform CLT, and

Lemma D.1 and Lemma D.2 given below.

THEOREM D.1 (JAIN AND MARcuUs). Let C(S) be the space of real-valued continuous
functions on a compact metric space (S,d). Also let X, be a sequence of C(S) - valued

random variables on (Q,F, P) satisfying
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(i) EX,(s) =0, forall s € §, and,
(i) sup,es EX3(s) = L.
Suppose there erist a nonnegative random variable M, E M? = 1, and a metric p on S,

which is continuous with respect to d, such that given s,t € §, w € Q,
[ Xn(s,w) = Xa(t,w)] £ M(w)p(s,t).

If [ H)/?(S,€)de < oo, then the sequence X, obeys the central limit theorem. That is,

n-Y?2 Y7 | X; converges weakly to a Gaussian measure on C(S).

ProOF. See Jain and Marcus (1975). O

NoTATioN D.0.1. Let &, be a compact subset of the closed unit ball in lin T(F, f*),
w.r.t. the sup norm, centered at the zero function. That is,

af(u v) Bf(u v)

G = {f € linT(F, f*): Ifl £ L= £ LiI———lI < 1},

where || - || denotes the sup norm. Furthermore, let H(®y,¢) denote the metric entropy of

®; under the sup metric when &, is covered by a finite € net. O

ReEMARK D.1. (i) &, is compact in C(Z), and can therefore itself be regarded as a
compact metric space with the sup metric.
(ii) Let K C R* be compact. Then by a result of Kolmogorov and Tihomirov (1961),

for every G C C"(K)

1
H(G,e) < et

™ |-
.

In our case k = 2, r = 2, and G = &,. Therefore, H(G,,¢€) <

LEMMA D.1. Let ng be a least favorable curve. Then fori=1,...,p,
(i) n=1/?( g 22 Betead (g — mp,) = 0y(1), and,

(ii) n=1/2282Bottad (L sy g ) = 0,(1).
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Proor. We will show (i). The proof of (ii) is similar. Now since the Fréchet derivative

ae(ﬁa nﬁ;xh yj’zj)

an = y; — x;B — na(2;),
we have
d 3L,, y > d o¢ 3 y X5, Y5, 25 -
G i = 1) = (3 g P i () o)

i[zu 2,712 (211718, (2;) = 76, (25))
i A(zi,2;)60(25),
where, A(i,2;) = zi; + 75-78,(2;), and &(z;) = 7ig,(2;) — 18, (2;) € lin T(F, f*).
REMARK D.2. The notation z;; here refers to the ith. element of the vector x;. O
Notice that since z and z come from distributions with compact support,
5:1? |A(z,2)| = M < .

This also implies that E|A(z,2z)|? < oo.

For any £ € &g, let us now look at the map £ — A(z,z)é(z). First, notice that since

|4z, 2)6(z)ll = sup |A(z, 2)¢(=)
= sup | (=, 2)l|€(2)]
< llllsup | Az 2)

< Mgl

€ — A(z,z)£(z) is a continuous mapping on &,. That is, this map is an element of

C(®y), the space of all continuous functions on &,.
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Secondly, since each £ in &, is also an element of lin T(F, f*),
E A(z,z)(z) =0

by the least favorable curve property of ng. With these two points in mind, we can now
treat {A(z:;,2;)€(2;)}}=, as 2 sequence of C(®,) - valued random variables with zero mean
and finite variance. Note that the random variable A(z,z)&(z) also has the property that

for all El) 62 € 607

|A(z,2)61(2) — A(z,2)6:(2)| = |A(=, 2)[|61(2) — &2(2)]
< |A(z, 2)l[|6: — &I,
with E |A(z,2)|2 < oo. This fact coupled with the observation that
/: HY*(®g,¢€) de < o0,

allows us to utilize the uniform CLT of Jain and Marcus (1975). Hence from Theorem D.1,

for all £ € B

—nTP Y Az, 27)€(z;) = ~n Y o + a%ﬂno(zj)]ﬁ(zj) (D.10)

= 0,(1). (D.11)
Now by Assumption 3.5.3, as n — oo,

Pr{n"‘(ﬁgo - T]go) € @0} - 1.

So w.l.o.g. assume that n® (g, — ng,) € By, for the probability that this event does not

happen can be made arbitrarily small. Then since (D.10) and (D.11) hold for all £ € B,,
we have

—n"1/? _Z[-’Bu + %nﬂa(zj)]nm(ﬁﬁo(zj) — 78,(25)) = Op(1),
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which implies that

n2Y zi + %{'Tlpu(zf (718, (25) — 18, (2;)) = 0,(1).

i=1

LeMMA D.2. Let ng be a least favorable curve. Then fori,j=1,...,p,

(i) Ln(ﬁv f’ﬁ) - Ln(ﬂs 7’/3) = Tgl)(ﬂ), with

1d*r{(B)

sup n dﬂ,dﬂ]

B

= 0p(1),

(i) La(B,7p) = La(B,mg) + 228125 — mg) + r(2(B), with

d (2
n=!2 d—ﬂ,-rs‘.)(‘BO) = 0p(1).

Proor. [Lemma D.2(i)] By a Taylor expansion,

E(H, f]ﬁ;xv Y, Z) = f(‘B, e X, Y, Z) + ra(ﬁ; X, y:z)v

where,

18) 4y . (f5(2) — na(z))-

L 8¢(B,thg + (1 —t
ra(ﬁ;x,y,Z)=/ (B e + { )
t=0 an

Now let 7,(8;X,y,2) = QM(B;x,y,2)(7s(z) — na(z)), and note that since, L,(B,1p) —

Ln(ﬂ1 175) = 22=1 e(ﬁv f]ﬁ; Xks Yk, zk) - e(lgvnﬁ;xln Yk, zk)v we have
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r(B) = Y QM(B; Xk, Yk, 26)(fia(ze) — Ma(zi)), and

k=1

() = z (5081 v 20| ) = a(22)

+ZQ<”(ﬂ,xk,yk,zk) E> o) — 7 —=-1s(z)| implying

1 d® _1 n d ~
naga " P ;[dﬂ,dﬂ.Qm(ﬂ”“”y’“z*)](”"(z*) ()

d d
+ -Z {d—ﬁ_Q(l)(ﬁ; xkxykazk)] [Eﬁﬁﬂ(zk) - Eﬂﬁ(zk)]
] J 2
d
+ = Z [dﬂ (1)(ﬁ;xk,yk,zk)} [zﬁfﬁﬂ(zk) 0 =7 8(2¢) ]
+ 157008 %0, 1, ) [L (2) - ~—na(2 )]
n P P Xe> Yis 2k dﬁjdﬂ,‘nﬁ * dﬁjdﬂl el -

Therefore, using Assumption 3.5.2 and Assumption 3.5.3

n

w0 |z 25, (8] < s3plite) — malo)| 32| 755 0 B o
AT e ’
d . d )
+s;1£) ﬂjn,a(z) a5, Uﬁ( ) ; aB: (B Xk, Yrs Zt)
b ;(rl) o:fx) ~
+sup |~ np(Z) np( z) lz d QM (B; Xk, Ve, i)
Az |dB; db; n dﬁ,
o(1) S 0,(1) !
, .
b s | () = 0] 2o QB )
) e ) e g
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REMARK D.3. It is instructive to see how the terms involving Q(!) are O,(1). So let us

show that 1 5°0_, |dp‘:zﬁ'Q(1)(ﬂ;xk,yk,zk)| = 0,(1). A similar reasoning can be used to

verify that the other terms are bounded in probability. Thus,

1 & a2 2| d? L 9B, tig + (1 - t)ng)
L ) 4l B dt'
n ; dﬁjdﬂ,Q (ﬁ’ Xk, ykvzk) Z: d,BJd,B‘ -/t_O aT’
LS| [ PuB U=,
n g t=0 0B;08:0n
1 L133(B, tig + (1 - t)ne ‘
< - dt
T ne /_o d83;08:0n
g 3f(ﬁ,n)l
< = gE 0
= 7 & beb nen |08;0B:91
= O0p(1),
since
aae(ﬁ,fl)

33€(ﬁ,n)| :
E —|} <E
[Z‘ég nex|0B;08:m|| = | aehnen

by Assumption 3.5.2. O

2
b

aﬂjaﬂian

Proor. [Lemma D.2(ii)] By a Taylor expansion,

e(ﬁ? ﬁp;x,y,z) =£(.B7 Ny X, y,Z)+ (ﬁ’ T’g: y,Z) (Z) Uﬁ(z)) + rb(ﬂ;xv yaz)9

where,

Gxya) =3 [ (1= T8 L0 iy y(a) ~ p(a))
= Q)(B; x,y,2)[ia(2) — na(2)]"-

But since L.(8,ng) = Zk=1 &(B; ngi Xk, Y&, 2¢ ), We have

D(8) = 3 QO(B: xe, v, 76 pla) ~ (2 )1
k=1

which implies that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

diﬂi'rg)(ﬁ) = kz::l [%Q(z)(ﬁ;xhyhzk)] (76(2&) — np(2x))?

n

+2) Q(B; e, e, 2 )(7ia(2e ) — na(ze)) [diﬂ,-(ﬁ"(z") - %{‘nﬁ(zk))] :

k=1

Thus,

n

|5578)] < supla(a) - naa)* 3

d
—0@(3-
d,Bi & (ﬂyxky yk,zk)

dp;

d d
+ 2 sup |7s(z) — na(2)| sup d—ﬁ:ﬁa(z) - E"ﬁ(z)

n
x 3 1QP(B: Xk, ye, 2e)|-
k=1

Therefore, using Assumption 3.5.2 and Assumption 3.5.3

- . ¢
w2 < sup(n'/*|1,(2) - e, ()1 7 3
~ o k=1

d
E_‘Q(z)(ﬁo; Xe» Yk Zi)

_d__ (2)
dﬂi Tn (ﬂO)

n ~ -

op(1) 0;6)

d d
a5, 180(2) — 75.78,(2)

>

+ 2sup n'/%(fjg,(z) ~ ng,(2)| sup n'/*
z z

v —

0p(1) 0p(1)

X zn: 1Q®(Bo; xi, Y 2|
k=1

~ -

0,(1)

= 0p(1).

Similarly, the terms involving Q(®) can be shown to be O,(1) by using the reasoning in

Remark D.3. O
We are now ready to prove Theorem 3.5.2.

Proor. [Theorem 3.5.2] From a Taylor expansion w.r.t. 3,
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o= i)

_ dI, (ﬂo,np,,) . "o, x(Bia))
dg dBds’

for some B; between 3, and B,. Notice that since B, is consistent, B; £ B,. Thus,

lMl ]"n_l,zdL,,(ﬁo,ﬁgo)
n  dBdg’ dg '

Now using a Taylor expansion w.r.t. 7,

(:3 130)1
nllz(Bn - ﬁﬂ) = [‘—'

Ln(ﬂ77}ﬂ) - Ln(ﬁv 7]5) = TSll)(:B)

where r{})(3) as defined in Lemma D.2(i). Therefore,

1d?La(B,7g) _ 1d’La(B,ms) _ 1d°r{(B)
n  dBdB; n dBidB;  n dBdB; ]

and from Lemma D.2(i) we get that

sup

ld L (:anﬁ) ldzL (ﬁﬂ?ﬁ)

Now, yet another Taylor expansion w.r.t. n yields

d [aLn(ﬁv 775)
dg an

with r(>)(83) defined in Lemma D.2(ii). Hence, using Lemma D.1 and Lemma D.2(ii),

w7 (LB e) — LalBoa)] = 77 (7 = 1) + 728

n-! dL, (ﬁvnﬁn) - ')dL (ﬁvnﬁa) - d aL (:30777;3., _
/2—_&_3__— 12 ————dﬁ =n~? [dﬁ—‘_""" ](77 n8,)
-1 23[’ (:307T’ﬁn) d . i
+n T(E%(’ - dﬁﬂﬁn)
+ _T(z)(ﬂo)
= 0,(1),
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which implies that

n=1/2 dLn(ﬂm ﬁﬂo) = p-/2 dl’n(ﬁm Tlﬁo)
4B dp

Therefore, (D.12) and (D.13) imply

+0,(1). (D.13)

; L& La(Bos8,)] ™ | 1/29La(Bo: ;)
1/2 - —|_= n\Z0y 1B, ~1/2%&~n\Mo- 'iB, 1).
n (ﬁn ﬂO) [ dﬂdﬂ’ n d,B + OP( )
But since 7g is a least favorable curve, —%%ﬂl £ Ig,, and by Slutsky’s Lemma
5 dL.(By, 1,
n2(B, — By) = n-2p; HenlPotier) | g (D.14)

(] dﬂ
Now by the CLT,

n_l/z dLn(:Bm nﬁo)
s
a.nd thus nllz(Bn - ﬂO) _d_’ N(O’Iﬁ.ol). D

4, N(0,15}),

Proof. [Theorem 3.5.3] Using the asymptotic linearity of 3, from (D.14),

2/ A —-1/2 = - d
n‘l/-(ﬁn —.Bo) =n 1z Z[ﬁn‘—ﬂen(ﬂ07 N8y Xis yivzi) + Op(l)v and
i=1
n'2(B3, - B,) ;‘-‘: N(0, I3").

Similarly, the LAN condition implies that for any § € R?

L

RYPR oy :
£n =n 1/2 ;6,E6"(ﬁ°’ nﬂo;xi,yi,z;) - 26 [ﬁoa + Op(l), and
£ ;Td’ N(-%&'[,;oa,s'fﬁoa).

Hence by the Cramér - Wold device,

Y2(B, - Bo)) _d 0 I &
(n L. ) 20 ([-;a’lpoa] *[3” 6’[506]) '
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Now let B, = B, + n~'/26. Then using LeCam’s Third Lemma,
n!/%(B, - Bo) = N(8,I5)).

But this implies that
nI/Z(Bn —lan) ﬂi’ N(O’ '[[;ol)a

and since the limiting distribution does not depend upon &, 3, is regular. [J
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APPENDIX E
PROOFS OF RESULTS IN SECTION 3.6

PROOF. [Theorem 3.6.1] Let A > 0. Since §"(Au, Av) = QYRESIE] = xrs(u,v),

67(-) is homogeneous of degree r. To verify the orthogonality conditions, let g(-) be a

homogeneous function of degree r. Then since g(z,,2;) = 2] g(f:, 1),
_ SE(e.l2), =
B{(e: = 8"(z1, 2))a(z1 7)) = El{m: = <y Fao(C 1)

o E(23zig(2,1)[2)

= E[:c,-g(zl,zg) — 2y E(Zgrlg) ]

o E(zig(21, 22)| 2)
= E[zig(21,22) — 2 E(z3[2) ]

CE(zig(21, 22)| 2)
= E[zig(21, 2)] - ]E[zf E (227|2) ]

E i ‘.""1'125'L
= Bz )] - E[E {7 e\ 2y

Emﬂ%%M9E{”ﬁh

z
E(#5712) :

2

22

= E[z:9(21,2)] - E[

=]

= Efzig(z1, 2)] - BIE {ng(ar,2)| 2}

= E[z;9(z1, 2,)] — E[z:g(21,22)] = 0.

Thus, the necessary and sufficient conditions for 6°(z,2,) to be the required projection

are satisfied. [0
93
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Proor. [Proposition 3.6.1] To see that ng(u, v) is a least favorable curve, first notice

that fori=1,...,p

r ro|3y U
v E [z,-jzzjlx—; = u]

SR

225

d
2g.ea(w ) = =

which by Theorem 3.6.1 is the least favorable direction. Hence, the curve 7g, certainly
has the least favorable direction as the tangent vector. Now 7 is clearly a homogeneous
function of degree r, i.e. ng € F. So to verify that 7g is a least favorable curve, all we

have to do is to show that 7z, = f*. To see this, notice that at 3,

VE [y =4 v E (T aibi + [, 25)) o5 2 = 2]
E[glm=s] E [ = 4]

22;

r rlzy; __u
iﬂ v E [.’B,‘j22jl;;f = v]
= i0

. 2r) 2
=1 E [22] ;f u]

v E [f (2117321)22;|2L = ':']

e [l = 1]

225

iy =
[z"’ 22’ | 23 "]

’.'Iﬂl- — —]
y v

'E
= ngov
I.

v E [f'(.z_‘L l) r{2y — g,]

2] 23j v

ﬂL u
z;, v

4 v'E $;j2£~l—‘-’- = u
=Y Bio — +v"f(=,1)
E |22 = v

i=1

< e

e

22

e s

P v'E 1:,, 2,[:—;{-
=S b s
i=1 E ‘ =

Z2;

+ f(u,v).

e|=

Hence,
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'E |y
f'(u, ‘U) v [yJ 22]

lzl —
225 v

P

£ [er 2y

2] 22y
Mg, (4, ).

u

v

]

- Bao

i=1

v'E [:1:;,-221

|5k =
225

]

E [ 2r‘_z_1;__

]

Therefore, 7g as defined in (3.6.1) is indeed a least favorable curve. To see that g

consistently estimates 7g, notice that from standard results on kernel estimation

v Y= lyjzng(i[" z_u]) v'E [yizhlzz, - %] and (E.1)
T i—;,*]) E [27|22=2] '
v Sra ze KA - ), vE [zl = ¢ (5.9
ST AR - :—;ﬂ) e '

Hence from (E.1) and (E.2)

UUD I szzjK( :—;f]) Xp:ﬂ v i %5 235 K( _1_[5 ~ ;_;f]
ZY-‘—I z'r K [ ;_:']) i=1 ' Z’}-l zer( [ i_;f]
P
—_
v"E [Wz,li“' = %] _Z”:ﬂ_”'E ziizhi|ik = %
3 b
E 2'[-:—5--5 i=1 E 22,|§f"':,£

which implies that 7jg £ ng. Therefore, 7 is a consistent estimator of 7.

a
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APPENDIX F
PROOF OF THEOREM 3.6.2

To prove Theorem 3.6.2 we will closely follow Ichimura (1993). The proof will be
obtained as a series of lemmas and propositions. Because of its length, we will skip
most of the tedious algebra. Furthermore, we will only prove (1). The proof of (2),
(1'), and (2') is similar. In what follows, the limits of integration are always ( —o0, 00)

unless otherwise specified.

NoTaTiON F.0.1. Let,

n

: v - 1 u oz
An(u,v) = na, & szzjK(an [v z-_;j])
Ba(uw) = —— 3 FK((E - )
e na, = W ap v 2z
t=ufv

tj = 215/ 2
gnj (1, v) = 0" 25 K(~[= = Z).

We will also make use of the following inequality, given in Ichimura (1993), to

majorize various terms.

THEOREM F.1 (BERNSTEIN’S INEQUALITY). Let Yin,...,Ys, be independent random

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97
variables with zero means and bounded ranges, that is, |Yin| < c,. Write o2, for the
variance of Y;,. Suppose V,, > o2 +...+ 02.. Then for each £, > 0,

_62
Pr{|Yin+ ...+ Yan| > &} < exp {m} . 0
Now let A,(u,v) 2 A(u,v). Clearly, A(u,v) = v"E[y;25;]t; = t]p(t). Also,

I/i,,(u, v) — A(u,v)| <L Ifi,,(u, v)—E /in(u, v)|+|E /i,.(u, v) — A(u,v)|.

We first determine the rate at which A,(u,v) converges to its probability limit. This

will be done with the help of the following lemmas.
LemMA F.1. sup,, |E A, (u,v) — A(u,v)] = O(a2).

Proor. Since

n

- v" - 1 . u 2z
E An(u,v) = a ZEyjzng(a—[; - i])
n j=1 n

- _ / K(i[t — ))E [y;.25;14;]p(t;) dt;

v / K(s)E [y;23;|t — ans]p(t — ans) ds.

I

For some t* between t — a,s and t,

E Au(w,0) = A, 0) = 107 [ K()[(t - ans) = 6(8)] ds
= vla/2] [ K(syu"(e) dsf

<alM
where,
M = sup [¢”(t)|sup|v'|/szK(s)ds.
t v

Hence, sup, , |E An(u,v) — A(u,v)| = 0(a2). O
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We now look at the term |A,(u,v) — E A,(u,v)|. Since the dependent variable y
may be unbounded, a truncation procedure is used to deal with this term. So let
Inj = Iyy,i<m,) and I[,‘,j = 1—I,;, where M, is a sequence of positive numbers chosen

such that M, — oo as n — oc. Then,
An(u,v) — E Ap(u,v) = (An(u,v) — E Ay (2, 0))I+ (Aa(z,v) — E A, (u, v))I5,

where,

n

(An(,0) = B An(a, 012 = 3 [y g K1t = 1) ~ B LK ([t = 1)

n j=1 a

i[yjlf.jK(a—ln‘[t - 4]) - Eij;jK(i[t - ¢])]-

,vt'

(An(u,v) —E Ay (u, )€ =

na,

Therefore,

Pr{sup |A.(u,v) - E A (u,v)| > 2¢} < Pr{sup |A.(u,v) - E An(u,v)|[° > €}

+ Pr{sup |A,(u,v) = E Ap(u, v)|L > €}.
LeMMA F.2. Let cg = 2E |y;|?supy v|gnj(u, v)|. Then,

Pr{sul? | An(u, v) = E An(u, v)|I° > €} < a,,dcl;i_l '

PRrOOF. By an application of Hélder and Chebychev inequalities,

Pr{sup |A, — EA4|I° > €} = Pr{sup|)_[y;I7;gn;(t, v) — Ey;[7;gn;(u, v)]| > nane}
u,v u,v i=1

< Pr{d_ sup |[4L5;0ni(2, v) — E45I59n;(u, v)]| > nane}

i=1 u,v
c E|y;|?
aeMi~t’

where ¢ = 2sup, , |gnj(u,v)[. O
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Now since Z, X Z, is compact by assumption, w.l.o.g. assume that it lies inside the
unit cube in R2. Also let § and v denote some positive numbers in this proof that are
chosen appropriately. What values of §, v to choose will be determined according to
the requirements of the subsequent lemmas. For i = 1,2, partition Z; into N; cubes
having each side of length §a%. Therefore, Z;, x Z, is partitioned into N = N; X N,
cubes with N = §=2a;%. That is, Z; x Z, C UX,S;, where S; is an open cube in
R?2 with each side of length §%2a2”, and N = 6-2a;%. Furthermore, for each S; let

(u,-,v,—) €S; withi=1,...,N. Then,

Pr{sup|An(u,v) — E A, (u,v)[[ > €} < Pr{UY, s;lp | An(u,v) — E A, (u, 0)|I > €}

N
< Z Pr{s;lp [An(u,v) — E Ap(u,v)|I> €}
£ .

T14+ T2+ T3, where, (F.1)

N n
1 ne
Ti= § 1:Pr{|_an z 1:[yj[njgnj(ua v) — Ey;lnjgni(u, v)]| > 5 }
1= J=

N n
1 ne
T2= ZPF{SgP Ia—z[y,-l[njgn,-(u,v) = Yilnjgnj (i, v)ll > -}
i=1 .

nj=1

N n
1 ne
T3=). PY{SEP |~ Y (Ey;Lnigni(u, v) — EyiLnjgni(us, v)]| > VRL
i=1 ' n =1

LeMMA F.3. Let T1 be defined as above. Then

Canan,€?

1+Mne}’

T1< 6 %exp{-2vloga, -
where, ¢3' = 16 sup, v*" sup, E [(y;1,;25;)%[¢] sup, p(2)-

PROOF. As in Ichimura (1993), apply Bernstein’s Inequality with

na,€

5 cn =M, V,=coina,

€n =
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where,

¢ = Suu.P |gnj(w, )|
¢z = 2[sup v*'] [sup E(y;1;25;)?[1]] [sup p(2)].
O

LemMa F.4. With T2 as defined before, T2 < §~2exp{-2vloga, — 228} 4 o(1).

Proor. First notice that

1 & ne
Pr{sup |a— Z[yj][njgnj(uvv) — Yilnignj(us, v:)]| > 74—} =T24 + T2p,

T n j=1

where,

=1
T2, = PI'{I z ’a_[sgp |yjlnjgnj(u1 v) - yj][njgnj(uh vi)l
j=1°n *

k(13
-E sup |95 LnjGnj (%, v) = Y5 1njgn;(us, vl > g}
1 €
T2 = Pf{a—E sup 195 Injgn;i (%, v) = Y5 Lajgn; (ui, vi)| > g}-

Once again, apply Bernstein’s inequality with

na,e
8 ?

- a2 -
e = cgMua2"t, V, = crna@Y

én =
where ¢g = 26¢4, c7 = 6%¢3, and

1 v z; 1 . u =z
cq = sup w2 K (—[~ - =D+ sup |rv" "tz K(—[- - —
4 u,uEI;.I 2j (a,,[v Zgj])l u.ue%.l 2j (a,,[v sz])l
u o, LUz

— S K(—[= — 24

+u?eps.lvz"22] (an[v sz])l

to get,

na,e’cg
20-3 -1
a2 =3 + Mna¥~le

T2, < exp{—

2
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with ¢g! = 128¢;.
To handle T2g, apply Chebychev and Hélder inequalities to get

8(E |y; Lnj|?) /*(E [sups, |gn;(u, v) — gnj(ui, v:)|]2)}/?
€a,

T2p <

Now ¢ > 2 implies that (E |y;L,;|?)}/? < co. Moreover, uniform continuity of gn;(u,v) on

S: allows us to conclude that 725 < °—“’1—$:L——l-, where ¢, = 6[E |y;1,;]*]'/?. Therefore,

N N
T2< ) T24+ ) T2

i=1 i=1

na,€’cg }+ croal™!

<N exP{_aﬁ”“" + Mpas—le €

C[odv-l

But notice that for » > 1, a~! — 0. Hence by choosing v > 1, 22— — 0, and

na,€’cg
2v=3 + M,a4" e

T2< N exp{—a } +o(1).

Furthermore, it may also be shown that if » > 1.5 and n is sufficiently large,

na,€e3cg Cana, €

- <62 - - .
N exp{ e Mnai""le} < 6 *exp{—2vloga, Tx M,,e}
Hence, T2 < 6~ 2exp{—2vloga, — %’ﬁ;f} +0o(1). O
LEMMA F.5. With T3 as defined before, T3 = o(1).
ProoF. Notice that by the previous result,
ad 1 & ne
T3 =) Pr{sup I~ > [Ey;lnigni(2, v) — E y51nign;(u, v)]] > T}

i=1 Ss n =l
ane€

N
< )" Pr{E sup [y;n;gn;(%, ) ~ YjLajgn;(ui, v:)| >
S, 4

i=1

N
<> T2%

i=1

< o(1).
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O

ProposiTiON F.1. |A.(u,v) — A(u,v)| = O,(n~>), if

Acac (1-2))(¢-1)
2~ q

PROOF. Since we have obtained the terms that majorize 71,72 and T3, by (F.1) we

have

Pr{sup [An(2,v) = EAn(u,0)|]I> €} = T1+ T2+ T3
S,

cana, €

Tt Me Mne} + o(1).

< 267%exp{-2vloga, ~

This inequality, combined with the previously obtained result

Co

Prfsup |4n(u, 0) ~ E Au(u,0)II° > €} S — iy,

leads to the conclusion that

Pr{sup |An(u,v) - E A,(u,v)| > 2¢} < —
u,v Q€

g~1
n n

2

C3Nan €

-2 — o arn-
+ 26~ “exp{—2vloga, T+ M

}+o(1).

Now in the above inequality, replace € by n=*¢g, a, by =2, and choose

nay, [(—logaﬂ)]”2
(~logan) L nad/ =Y

M, =
Then after some tedious algebra we can show that

Pr{sup [An(u,v) — E A(u,v)] > 2n7%¢} — 0,

(i) a< min{l,ﬂ—"lq'i, 1-2\, Q'—""\q)-(—"’—ll}, and

(ii) v is chosen such that v > max{1.5,1+ A/a}.
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Therefore, combining this result with the fact that
sup IEAn(uy ’U) - A(u, 'U)I = O(a:) — O(n—ZQ)’

we get that

sup |4, (u,v) ~ A(u, )| = Ofmax{n™,n"2}).

Hence sup, , |An(u,v) — A(u,v)] = Op(n*), if

A -1~-2A -2X)(¢g-1
A cp<minfr,i2L=2 g =2 1),
2 q
But since,
1-2))(1-
1>1—2/\>( X q)’
q
and
qg—1-2x S (1-2X)(g-1)
q q
for ¢ > 2, the condition on « simplifies to
A - -
A L =2
2 q
O

REMARK F.1. This proposition shows that v should be chosen such that
v > max{1.5,1+ A/ a}

while constructing the cubes S;. Clearly, this value of v satisfies the requirements of

Lemma F4. O
ProposiTioN F.2. Let B,(u,v) & B(u,v). Then,
sup | Bn(u,v) — B(u,v)| = O,(n™")

L (=21

A
Z<
2‘0 q
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PRrOOF. Since B,(u,v) is obtained from /i,,(u,v) by putting v"y; = 1, the result of the
previous proposition applies. [

We are now in a position to finally prove Result (1) of Theorem 3.6.2

PRrOOF. [Theorem 3.6.2] First notice that

A, (u, v Cn
) = i) Gt

where,

A j=1 'J‘2JK an ':—;L
Crilu,) = Zz KL o ﬂLf)D

ma(u,v) = Z}EZ Z) E_:ﬂcz;((:: :)

and C',.,-(u, v) & Ci(u, v). Now,

. _ An(u,v)  A(u,v)
nﬁ(uv v) - nﬁ(uvv) - an(u’v) B(u ‘U ]

i, v)  Ci(wv)
,-Zﬂ'[B(u 2 B

Now, since inf, , |B(u,v)| > 0, 0 < sup,, , |A(u, v)| < o0, and 0 < sup, , |Ci(u, v)| < oo by

assumption, Proposition F.1 and Proposition F.2 readily imply that

A ( ) A(u:v) —_ n—A
su B, (w,0) B(u,v) = 0p(n™7),
C'm'(uav) _ C (u v) ( —A)
Bn(u’ v) B(u v)

And since each §; is bounded

.

VRN LY - SN L X
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An(u,v) _Aw,v)
B.(u,v) B(u,v)

sup, |78(u, v) — na(u, v)| < sup

P é’ni(u,v) Ci(u, v)
+ ;5,}1,? B.(u,v)  B(u, v) |ﬁ.|
An(u,v) _ A(u,v)
.<.. Sup B (u v) - B(u ,v)
+ M;su v ."'(:: ;’)) CB;((:”:)) sgp 18:]

= o,(n™?).
Hence, sup, , 5 18(¢, v) — ng(u, v)| = 0p(n~*), which certainly implies that

s‘:lp |ﬁpo(u7 'U) - nﬁo(u7 U)I = oﬂ(n—l\)'
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APPENDIX G
PROOFS OF RESULTS IN SECTION 3.7

REMARK G.1. In this section, all convergence is w.r.t. the C?> norm. O

Proor. [Theorem 3.7.1] Using Theorem A.2 we have to show that F —R f* =
T(F, f*). We proceed case by case.

Case I: f~ is strictly concave on Z:

If f= is strictly concave, f* € int(F) which implies that T(F, f*) = H.
Case II: f* is affine on Z:

=> Let f € F—R,f*. Then there exists a sequence (A, f,) € (0,00) x F, such that
fa = Anf" — f. But since f* is linear, f, — A, f" is a convergent sequence of concave
functions. Hence the limit f is also a concave function, i.e. f € F. This shows that
F-RufCF

<= To show the reverse inequality, let § € F. Now for ¢ > 0, define n(u) = f~(u)+t6(u).

Then, for all © € Z and @ € R?,

o[V (n(u) - t6(u))]la] = &'[V* f*(u)]e

=0,

since f* is affine on Z. This implies that 7 — ¢t§ € F, which further implies that n € F.
106
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Therefore, 6 € F — 3 f* C F — R f*.

Case III: f* is concave (but not strictly concave) on Z :

Since f* is concave but not strictly concave, there exists a nonempty set Zy C Z such that,
det[V2f*(u)] = 0 for u € Z,, while for u € Z — Z, the Hessian matrix V2 f*(u) is negative
definite.

We first show that F —R,.f- C W. Solet f € F—R,,f~. Then there exists a
sequence (A, f,) € (0,00) x F, such that f, — A, f* — f. Let g,(u) = fa(u) = An f*(u).
Now notice that on Z,, det[V3g, — V2f,] = A2det[V2f*] = 0. i.e. the determinant of
the Hessian of g, — f, vanishes on Z,. But this implies that on Zg, g, — fn € W, i.e.
gn € W + f,. However, f, € F C W implying that g, € W since W is a convex cone. But
this says that g, is a convergent sequence in the closed cone W. Therefore, its limit f also
lies in W. That is, }'_——Rw:g W.

Now for the reverse inequality. Let é be any function in W, and for ¢ > 0 define
n(u) = f*(u) + té(u). Then if we can show that n,(u) € F for all u € Z, we are done
because then § = 2L~ ¢ F - Lf- CF —R, f-, implying that W C F — R, f-.

So we show that , € F. Now as before, notice that on Zg, det[V?n, — tV3§] =
det[V2f*] = 0. i.e. the determinant of the Hessian of n, — t§, vanishes on Z,. There-
fore, n, € W + té6. However, since § was chosen to be in W and W is a convex cone, we
have that n € W. Thus the Hessian of n is negative semi-definite on Z,.

Now on Z — Z; the Hessian of f* is negative definite, while no such statement can be
made about the Hessian of §. This implies that for all @ € R?, &’[V?7]a = a'[V?f"|a +
ta'[V3§]a < 0, for sufficiently small ¢. i.e. on Z — Z,, 7 is strictly concave. Thus we have
shown that for all & € R?,

SO if’lleZO,

Iv'l =
' Vin(u)e {<0 if u € Z ~ Zo.

That is, n is concave on Z. And since n € H by construction, we have that n € . O
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To prove Theorem 3.7.2, we need the following definition and the subsequent lem-

mas.

DEFINITION G.1. Let Dy = {f € H : f = fi — f,, for some f,, f, € W}. That is, Dy

is the set of all functions in H, which can be expressed as the difference of two functions

in W.

REMARK G.2. It is easy to see from its definition, that Dy C H is a linear space

containing W. [0
LEMMA G.1. Dy is a Banach space containing W.

PrOOF. As the above remark shows, Dy is a linear space containing W. So it only
remains to show that Dy, is complete. So let f, be a sequence in Dy that converges in
C? norm to f. We show that f € Dy. Since the convergence is in the C? norm, f € H.
So if we can show that f can be written as the difference of two functions in W, we are
done. This is done as follows. For z € Z, define go(z) = —(2} + 23). Then since the
Hessian of gy is negative definite on Z, go € W. Now for all z € Z, consider the function

h(z) = f(z) + %go(z), where € > 0. Therefore, for all & € R2,

o/[Vh(z)le = o/ [V? f(@)]ex + ~e [V go(2)]ex

<0,

for sufficiently small €, since g has a negative definite Hessian! and Z is compact. This
implies that A is strictly concave for sufficiently small ¢, ie. h € W, and f = h - fgo.
Moreover, %go € W, since ¢ > 0 and W is a cone. Therefore, f can be written as the
difference of two functions in W. Hence, f € Dyw. O

'And therefore, go is strictly concave.
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LEMMA G.2. Let € be the collection of all Banach spaces containing W, and let lin W =

r‘lxe¢X. 2 Then, DW = lin W.

Proor. Notice that since H € €, € is not empty. We first show that Dy, C lin W.
So let X be any Banach space containing W. Then due to the linearity of X, -W C X.
Now let f € Dy. Therefore, f = f; — f, for some fi, f, € W. But this implies that
fie WC X and —f, € =W C X. Therefore, again by linearity of X, f, + (—f2) € X.
That is, Dw C X, and since X was an arbitrary element of €, Dy C NyceX = lin W.

The other direction is even easier to show. By Lemma G.1, Dy is a Banach space
that contains W. Also, by definition Jin W is the smallest Banach space containing W.

Therefore, these two statements together imply that lin W C Dw. O
LemMMA G.3. Dy = H.
Proor. Clearly Dw C H. But H C Dw from Lemma G.1. O
We are now ready to prove Theorem 3.7.2.

Proor. [Theorem 3.7.2] When f* is strictly concave, T(F, f*) = H, and there is
nothing to prove. When f* is concave, but not strictly concave, the proofis straightforward
from Lemma G.2 and Lemma G.3. We now look at the case when f~ is affine on Z. Notice
that when Z, = Z, we obtain W = F. Hence, letting Z; = Z and replacing W by F in

Lemma G.1, Lemma G.2 and Lemma G.3, we obtain the required result. [J

2That is, lin W is the smallest closed linear space containing W.
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APPENDIX H
SOME MISCELLANEOUS RESULTS

PrOOF. [Theorem 2.6.1] => We first show that linT(F, f*) C lanF. This will imply

that lin T(F, f*) C linF. So let f € linT(F, f*). This means that for some m, there
exist {ay,...,an} € R™, and {fi,...,fm} € X2, T(F, f*) such that f = Y., a;f:.
Now since each f; € T(F,f*) = F — R+ f", there exist (gn,An) € F X R4y, such that
fi = limp—oo(gn — Anf"). But since g, € F C linF and A, f" € F C linF, we get that
gn — Anf" is a convergent sequence in [inF. Hence its limit is an element of linF. ie.,
f; € linF. Therefore, each f; is an element of linF. Thus, f = Y 1o, a; f: € linF which

implies that linT(F, f*) C linF.

<= We now show that linF C linT(F, f*). This will imply that linF C linT(F. f*).
So let f € linF. This implies that there exist {a;,...,em} € R™, and {fi,...,fm} €
x™  F such that f = Y I», a; f;. But since f* € T(F, f*), this means that each f; € F C
T(F, f*). Therefore, f = 317, a; f; € linT(F, f*). Hence, linF C inT(F, f*). O

TueoreM H.1 (A UseruL ResuLT). Let f be a real valued C? function on R*. Let
z € R*, and suppose that f is convez (resp. concave) at z. Then, det[V?f(z)] = 0 iff there

ezists at least one non-zero a € R¥, such that &'[V?f(z)]a = 0.

Proor. The proof is well known, but instructive. We provide it for the sake of com-

110
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pleteness.

= Let det[V?f(z)] = 0. Then the system of linear equations [V2f(z)]x = 0, has a
non-zero solution xo € R¥. That is, [V2f(z)]xe = 0, which implies that x4[V?f(z)]x, = 0.

<= Now suppose that there exists a non-zero ay € R*, such that af[V?f(z)]a = 0.
Let Q(ax) = a'[V2f(z)]a. Then since f was convex (resp. concave) at z, we have that
Q(a) is > 0 (resp. < 0). In either case, oy minimizes (resp. maximizes) Q(a). The
first order conditions then imply that 4¥&)| __ = 0. That is, [V2f(z)lao = 0. But this
means that the system of linear equations [V? f(z)]a = 0 has a non-zero solution aq. That

is, det[V2f(z)] =0. O

THEOREM H.2 (CLAssiCAL PROJECTION THEOREM). Let H be a Hilbert space and M
a closed subspace of H. Corresponding to any vector ¢ € H, there is a unique vector
mg € M such that ||z — mg|| < ||z — m|| for all m € M. Furthermore, a necessary
and sufficient condition that my € M be the unique minimizing vector is that x — my be

orthogonal to M.
PRrROOF. See Luenberger (1969). O

THeorREM H.3 (ProJECTION ON CONVEX CONES). Let H be a Hilbert space and M a
closed convez cone in H. Corresponding to any vector z € H, there is a unique vector
mo € M such that ||z — my|| < ||z — m|| for all m € M. Furthermore, a necessary and
sufficient condition that my € M be the unique minimizing vector is that (z —~ mg, mg) = 0,

and that (z — mg,m) <0 for allm € M.
ProOF. See Barlow, Bartholomew, Bremner, and Brunk (1972). O

ProprosiTION H.1 (CRAMER - WoLD DEvVICE). Let X, denote a sequence of random

variables in RP. Then X, % X <= §'X, 2 6'X, for every 6 € R®.
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APPENDIX I
PROOF OF LEMMA 4.3.1

t—Xj

Let t be a fixed point in Sx. Then since gn(t) = (nb5)~' 37, 3; K( 2 )s

(nbP )2 (Ga(t) — Ef §a(t)] = n~'/2 Z w, ;(t), where,
J=1

- - X; t—x;
wa,j(£) = b7 {y; K(—— :

t
b, )—EyJK( b, )}

Notice that Ew, ;(t) = 0, and that {w,(t),...,wna(t)} are i.id. terms. It
is then easy to see that Varw, j(t) = o%(t) + o(1). Furthermore, after some more
algebra we can also verify that w, ;(t) satisfies the sufficient condition in Lyapunov’s

CLT. That is, for some a > 0,

g2 _ o f L1
e = o))

= 0(1)7
since nb? — oo. Therefore, we have proved that for each fixed t € Sx,

(nb2) 2 [§a(t) = E; ga(t)] = N(0, 0%(t)).
112
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This clearly shows that for each t;, where j =1,...,m,
(n85)2 [3a(t;) = By galt;)] 5 N(0, 0(t;))-

However, in order to obtain the final result we still have to show that the covariance
between the various terms is zero. We verify this fact for only two terms. The
extension to m terms follows similarly.

So let s and t be any two fixed points in Sx. Then using the result just obtained.

the Cramér-Wold device yields that
nin ) < ([0, [0 464
—1/22_1 w, ;(t) 0] ' lp(s,t) o3(t)]/)’

where, p(s, t) = cov(wp, j(s), wn j(t)). Now to show p(s,t) = o(1), notice that

p(s,t) = cov(w j(s), wn (t))

= %cov(yJ K( ) Yj K( x, )
= B%E{K( x’ JK( )7(xj)}
- -E (&S "’ )F(%;) 1) f(x;)}

where, 7(t) = E(y?|t). Now let s — x; = b,u. Then by Lebesgue’s Dominated

Convergence Theorem,

E {K(S . )K(t ~ X )y (x;)) =

(s = bau)p(s — bau) du

./[- 1,1]p

= o(1),

since K(‘T‘“3 +u) — 0 as b, — 0. Similarly, we can show that
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1 S — Xj t — xj _
g E (K= E{K (=) f(x;)} =
bh /[_W K(u)f(s — bau)p(s — byu) du- /[-1.11' K(u)f(t — b,u)p(t — bu)du

= o(1).

Substituting these results in the expression for p(s,t) yields that p(s,t) — 0.

Hence, we are done. [J
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APPENDIX J
PROOF OF LEMMA 4.3.2

First note that since E; (y;]x;) = f(x;), we have that E;. (y;|x;) = fi(x;). Therefore,

using the law of iterated mathematical expectations and the fact that the observations

{x1,... ,Xn} are i.id.,

| ~ L tox
Ej; gn(t) - nbﬁ Ej; ;yjh( bn )

!

t-—Xj
by

t—x:‘
b

E {K(

)Ef; (yjlxj)}

)fa (%)}

B s, KCT D) d
= /[ | K(u) f5(t ~ byu)p(t — by u) du.

|

1

E {K(

n

~ S|

K(

Similarly,

E; ga(t) = / K(@)f(t = bru)p(t ~ bpu) du,  and the bias term

Ba(t) = (nb) /[

|, K(@p(t = baw){f3(& = baw) = f(t = byw)} du.

Now let B,(t|H,) denote the bias under Hq, while B,(t|H;,) denotes the bias under
115
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H,,.. Then,

Bn(t|Hin) = (nbﬁ)”z_/[ , K(u)p(t = bpu) { fi(t = bau) = f7(t - b,u)

6(t — b,u)

= ()" [ K(w)p(t ~ baw){fi(t ~ bau) = /(¢ - byw)} du

[_ll]'],

- /[ | K(up(t = 8, )3(¢ ~ bou) du
-1,1]?

= B, (t|Ho) — / K(wp(t - baw)6(t - byu) du

[-

»

= Ba(t|Ho) — p(t)6(t) + o(1).

Therefore, to prove Lemma 4.3.2 we simply have to show that B,(t|Hy) = o(1).
However, before showing this we consider some local alternatives that cannot be

distinguished from the null hypothesis.

REMARK J.1. As pointed out by Severini and Staniswalis (1991), (J.1) clearly shows
that local alternatives that converge to f* at rates faster than (nb?)'/? will not be de-
tectable. For in this case we would simply have that B,(t|H,,) = B.(t|Ho) + o(1). More-
over, the same would also hold for all points t at which §(t) = 0, and therefore such local
alternatives are also not detectable. One way to get rid of such local alternatives is to
make m a function of n, such that m(n) — oo, as n — oo. This means that the function
6, which satisfies 6(t;) = 0 for j = 1,...,m(n), exhibits a highly oscillatory behavior as

n — 00, and is therefore unsuitable as an alternative. [

Now back to our original problem, i.e. showing B,(t|Ho) = o(1). To see this,

notice that since the kernel vanishes outside [-1, 1]?,
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| Ba(t{Ho)| = (nb2)Y/?| /[_1 » Ke(t - bau){f5(t — bau) — f*(t — byu)} du

< (nb2)? sup |fa(u)— f7(u)] sup p(u).
ue{-1,1}» ugl[-1,1]?

But from Remark 4.2.1(iii) we have

sup |fz(u) = f(w)| = Op({logn/n}=%),

ugfo,1}?

and this implies that B,(t|Ho) = O,(vnbh{*&2}5%). Now, from standard results
on kernel regression we know that the asymptotically optimal choice of bandwidth is
given by b, = O(n~ 7). With this choice of by, it is easily seen that for £ = i—iﬁ €

(0,1),

Bn(t|Ho) = 0,(V/nbi{log n/n}%)

- 0,({ &1 ™)

nl=¢

= 0,(1).

Hence, B,(t|Ho) = 0,(1) uniformly in t. O
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