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ABSTRACT

Sem iparam etric estim ation of finite dimensional param eters, when the  unknown func­

tions have to satisfy some smoothness properties, has been studied extensively. However, 

when dealing with economic d a ta  these unknown functions often have to  satisfy other prop­

erties besides sm oothness. These properties are  actually  the restrictions th a t economic 

theory  imposes upon unknown functional forms. Typically, these restrictions turn out to 

be shape restrictions such as concavity, linear hom ogeneity and m onotonicity. Though ex­

tensively studied in economic theory, there has only been a  lim ited use of these restrictions 

in econom etric practice notw ithstanding their trem endous usefulness.

In th is dissertation, I com pute efficiency bounds for finite dimensional param eters, when 

the  unknown function in the model is either concave, or homogeneous of degree r. I also 

construct estim ators th a t  actually achieve these bounds and show th a t  homogeneity of the 

unknow n function can lead to  dram atic gains in efficiency for estim ating  finite dimensional 

param eters. As a subsidiary result I have developed a  kernel estim ato r for homogeneous 

functions which, as far as I know, is new to the curren t econometric literature . I use this 

estim ato r to  develop an asym ptotically consistent test for hom ogeneity of functional form. 

Furtherm ore, I also show th a t if we restrict a tten tio n  to  the class o f all regular estim ators 

w ith square root asym ptotics, then concavity of the  unknown function does not help in 

estim ating  the finite dimensional param eters m ore efficiently.

In conclusion, this dissertation fulfills a  twofold objective. Firstly, it enlarges the class of 

models th a t applied economists can deal with efficiently, and provides them  with new tech­

niques to  efficiently estim ate  the finite dimensional param eters in sem iparam etric models

with shape restrictions. Secondly, it eliminates a  long standing lacuna in existing theo-
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retical lite ra tu re  on efficient estim ation, which has so far confined its a tten tion  to  models 

where restrictions have been placed on the  distribution of th e  “e rro r” term  while th e  un­

known functional form, apart from some sm oothness conditions, has been left virtually  

unrestricted. To the best of my knowledge, this a ttem p t is th e  first of its kind to develop 

efficiency bounds for models where the shape restrictions a re  imposed on the unknown 

functional form ra th e r  th an  on the d istribu tion  of the error te rm s, which is assum ed to  be 

Gaussian.
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C H A P T E R  1 

INTRODUCTION

T he objective of this dissertation is to  determ ine how finite dimensional param eters 

can be efficiently estim ated for an im p o rtan t class of economic models. In these m od­

els, some o f the  functions are known up to  a finite dim ensional param eter while the 

o ther functions are known only to  possess some shape properties such as concavity, 

linear hom ogeneity and monotonicity. Such “sem iparam etric models with shape re­

strictions” are frequently encountered in microeconometrics. The use of the  word 

sem iparam etric  here highlights the fact th a t some com ponents of these models are 

unknown functions, while the o thers are specified up to  a  finite dimensional param e­

ter.

In this d issertation , we will calculate the  minimum asym ptotic  variance, hereafter 

called the efficiency bound, th a t any estim ato r of the finite dim ensional param eter can 

achieve in a  sem iparam etric model w hen the  unknown function is either homogeneous 

of degree r,  or is concave. We will also construct an estim ator th a t actually a tta ins 

the  efficiency bound, when the unknow n function is homogeneous of degree r.

Previous techniques used in the determ ination  of efficiency bounds applied only to

models where either all functions were param etric or where the  unknown functions

were not restric ted  to possess any shape property. However, by confining our atten-

1
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tion only to  such cases, we exclude a large class o f models th a t are of prime in terest 

to applied econom ists. In the  models th a t we will consider, the imposition o f shape 

restrictions usually  leads to  a  reduction in the variance of estim ators w ithout harm ­

ing o ther lim iting properties such as consistency. O m itting  shape restrictions, when 

economic theo ry  dem ands otherwise, would therefore lead to  inefficient estim ation  

procedures thus reducing the  power of subsequent s ta tis tica l analysis. T his could 

have im portan t policy im plications, since sem iparam etric models are being increas­

ingly used to  answ er policy related questions. However, inclusion of shape restric tions 

complicates estim ation  because such restrictions generate  constraints that are infinite 

dimensional in n a tu re . To deal w ith these infinite dim ensional constraints, I use in 

this d issertation certain  techniques borrowed from nonlinear analysis.

This d isserta tion  lim its itself to  the analysis of i.i.d . observations, which a re  com­

monly generated  by cross-sectional models for d a ta . We look at the asym pto tic  

variance because it is a widely used criterion in econom etrics and statistics to  rank 

estim ators. Furtherm ore, in order to  exclude pathological behavior such as supereffi­

ciency, all estim ators are assum ed to  satisfy certain regularity  conditions. H enceforth, 

unless specified otherw ise the word estim ator refers to  a regular estim ator.

The organization of this dissertation is as follows. In C hapter 1 we construct 

some typical exam ples of shape restricted models, and  also provide a  brief review of 

efficiency bounds for the  param etric  case. We then ex tend  these concepts to  th e  case 

when the nuisance param eter is infinite dimensional.

C hapter 2 in troduces a  partially  linear shape restric ted  model. We begin by s tu d y ­

ing the identification issues and large sample properties for this model. We then  

com pute efficiency bounds for the finite dimensional param eters when the unknow n 

function is hom ogeneous of degree r , and also show how to  construct an es tim a to r
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th a t  achieves these efficiency bounds. We also do the same for the  case when the 

unknow n function is concave. T he chapter ends with a brief sum m ary of th e  results 

ob tained .

In C hap ter 3, we use the  estim ato r developed in C hapter 2 to es tim a te  homo­

geneous functions. This estim ato r is then  used to  construct a  test for detecting  the 

hom ogeneity of functional form s. Results of a  small simulation experim ent, conducted 

to  study  the  finite sam ple properties o f this te s t, are also presented.

To enhance readability, the  proofs of all m ajor theorems and allied results have 

been confined to the appendices.
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C H A PT E R  2

SHAPE RESTRICTIONS AND EFFICIENCY BOUNDS

2.1. M odels w ith Shape Restrictions

Let us begin by constructing some examples of shape restric ted  models th a t may 

typically occur in m icroeconom etrics. In these examples, we are interested in es tim at­

ing the finite dim ensional param eters d Q and <j>Q, when the only inform ation we have 

abou t the unknown function is th a t  it belongs to a  set of functions whose elements 

satisfy certain  properties. We let T  denote this set of functions. All observed d a ta  is

i.i.d., and £ is the  unobserved error com ponent which is assum ed independent of the 

covariates. We also assum e th a t £ is a  random  term  drawn from  a  Norm al distribution 

with zero m ean and  finite variance. In these models, any procedure used to obtain  

additional inform ation about the finite dimensional param eters, a p a rt from the fact 

th a t they are elem ents of a  well defined param eter space, is called a  sem iparam etric 

procedure.

E x a m p l e  2.1.1 (T w o  I n d e x  M o d e l ) .  Consider n similar firms in equilibrium, which

are geographically dispersed. T he firms are com petitive, have access to  a  CRS technology,

and produce a  single good. Therefore, for each firm the cost function c(q, w ')  =  qc(w '.  1).

Furtherm ore, for each firm, the factor prices w ’ are unobserved, while the cost per unit

4
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(c.) is observable. Notice th a t  c,- =  c (w ') ,  and c(-) is continuous, nondecreasing, concave, 

and homogeneous of degree one in its argum ents.

For simplicity, assume th a t  there  axe only two factors of production. Now let w\  = 

A i(x ,0 o )eCl and, w2 =  /i2(z,<£0) e(a. Here, hr, h 2 are known functions functions of ex­

ogenous variables, th a t determ ine the  factor prices, and CitC2 are error term s. Therefore, 

E ( c |/ i i ,h 2) =  / c(/i1ef l ,/ i2eC:,)d F ,ClXf3 =  f " { h l , h 2), and le tting  e =  c -  E (c |/ i1?/i2), we 

obtain  the canonical regression model c,- =  /* (h 1(x,-,d0) , / i2(zf,<^0)) +  £,. Note th a t  / '  

also has the sam e properties as c(-). T h a t is, /* is continuous, nondecreasing, concave and 

homogeneous of degree one in its argum ents. □

E x a m p l e  2.1.2 ( P a r t i a l l y  L i n e a r  M o d e l ) .  Consider a  firm producing two different 

goods with production functions Fi and F2. T ha t is, yi =  F \(x ) , and y2 =  F2(z ), with 

(x  x  z) £ R " x  R m. The firm maximizes to ta l profits p ij/i — w (x  +  p2y2 -  w 2z .  The 

maximized profit can be w ritten  as 7Ti(u) +  7r2(v ) ,  where u  =  (p ^ W i), and v  =  (p2, w 2).

Now suppose th a t the  econom etrician has sufficient inform ation about the first good 

to  param eterize the first profit function as t t^ u )  =  u '0 o- T hen the observed profit 7r,- =  

u(-0o +  7t 2 ( v £) +  where k 2 is m onotone, convex, linearly homogeneous and continuous in 

its argum ents. □

E x a m p l e  2.1.3 ( A n o t h e r  P a r t i a l l y  L i n e a r  M o d e l ) .  Again, suppose we have n 

similar but geographically dispersed firms with the same profit function. This could hap­

pen if, for instance, these firms had access to sim ilar technology. Now suppose th a t  the 

observed profit depends not only upon the  price vector, b u t also on a linear index of ex­

ogenous variables. T h a t is, 7r,- =  x (0o +  n m(p\,  • • • )?* )  +  £«> where the profit function 7r* is 

continuous, m onotone, convex, and homogeneous of degree one in its argum ents. □
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R e m a r k  2.1.1. A s p o in te d  o u t  b y  R ob in son  (1988), p a r t ia l ly  linear m o d e ls  c a n  se rv e  as 

a  first a p p r o x im a t io n  to  s i t u a t io n s  w i t h  “q u a l i ta t iv e  u n e v e n e s s  in prior in fo r m a t io n .” □

2.2. Shape R estrictions and Sem iparam etric Estimation

Sem iparam etric  estim ation of the  finite dimensional param eters, when J- is ju s t a 

set o f functions satisfying some smoothness properties, has been studied extensively. 

However, when dealing w ith  economic da ta  the  functions in T  often have to  satisfy 

o ther properties besides sm oothness. These properties a re  actually the restrictions 

th a t economic theory imposes upon the unknown function. As the exam ples given 

above indicate, these are typically shape restrictions such as concavity, linear hom o­

geneity and monotonicity. I t  is by now known th a t these properties provide powerful 

m eans for developing new estim ation and testing  techniques. Though extensively 

stud ied  in economic theory, there  has only been a  lim ited use of these restrictions 

in econom etric practice notw ithstanding their trem endous usefulness. As M atzkin 

(1994) points ou t, these restrictions can be utilized “to  reduce the  variance o f es­

tim ato rs , to falsify theories, and to  extrapolate beyond the  support of th e  d a ta ” . 

M oreover, “economic restrictions can be used to guaran tee  the identification of some 

nonparam etric  models and the consistency of some nonparam etric estim ato rs” .

As is well known, the move from a param etric approach  to a sem iparam etric one 

is usually accompanied by a  loss of efficiency. W hen restrictions implied by economic 

theory  are imposed on the  the sem iparam etric model, th is efficiency loss m ay be 

m itigated  due to  a decrease in the  variance of estim ators. This problem of variance 

reduction is m ost critical since the quality of subsequent analysis depends upon the 

quality  of current inference. By variance reduction I m ean not only the com putation  

of the  sm allest asym ptotic variance of any estim ator of the  param eter of in terest, but 

also the  construction of estim ators which actually possess th is variance. As m entioned
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before, this m inim um  variance is called an efficiency bound, and an  es tim a to r which 

a tta in s  this bound is term ed efficient.

Since shape restrictions can be utilized to  reduce the  variance of estim ators, effi­

ciency bounds a re  of fundam ental im portance in sem iparam etric models w ith  shape 

restrictions. T hese bounds can be used to  judge th e  efficiency of a  proposed semi­

param etric  e s tim ato r and to  help develop new estim ation  techniques. T hey  can also 

be used to  provide a  m easure of efficiency loss in the  move from a purely param etric  

approach to  a  sem iparam etric  one. M oreover, in some cases these bounds also help 

in ruling out th e  existence of certain types of estim ato rs  (Newey 1990).

T he extension of efficiency bounds from a purely param etric  to the  sem iparam etric 

case was first proposed by Stein (1956) and subsequently developed in th e  sta tis­

tical works cited  in Bickel, Klassen, Ritov, and  W ellner (1993). A ttrac ted  by the 

elegance of the sem iparam etric approach and its  wide applicability to  economics, sev­

eral econom etricians m entioned in Newey (1990)’s excellent survey article have also 

m ade valuable contributions to  this area in recent years.

However, m ost of the  research to date  has concentrated  upon developing efficiency 

bounds for d istribu tion  free models, i.e. models in which the distribution o f the  error 

term  is unknown (Cham berlain 1986, Cosslett 1987). W here shape restrictions have 

been involved, they  have been imposed on the e rro r distribution (Newey 1988), rather 

th an  on the unknow n function. Newey (1991) does discuss computing th e  efficiency 

bounds for a partially  linear model, but here too the  unknown functional form  has only 

sm oothness restrictions, and no shape restrictions, imposed upon it. But these cases 

form too narrow a  class, since they exclude models w ith shape restrictions which arise 

regularly in m icroeconom etrics, i.e. a t the  firm or the  consumer level. In fac t, as far 

as I know, this a tte m p t is the first of its kind to  develop efficiency bounds for models

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

8

where the shape restrictions are imposed on the unknown functional form  ra th e r than  

on the d istribu tion  of the error term , which is assumed to be G aussian. This research 

therefore, ex tends the class of models th a t  econometricians can deal w ith efficiently. 

It should be o f particular interest to  any applied practitioner in the  field because it 

provides new insights into incorporating shape restrictions in estim ation  procedures.

2.3. Asym ptotic Efficiency and Lower Bounds

For each n  let tn be an estim ate (based on n  iid observations) o f a  real valued 

param eter j30. Suppose th a t, for each /30, \ / n ( t n —(3o) -i- N (0,v(/3o))- Then according 

to  Fisher, v(/30) >  tg j ,  where ip0 is the  inform ation contained in a  single observation, 

and v(P0) is called the asym ptotic variance of tn . However, in th e  absence of suitable 

regularity conditions, this relationship does not necessarily hold as is indicated by the 

canonical exam ple of a superefficient estim ato r given in LeCam (1953). Therefore, to 

m ake sure th a t  the  information inequality holds, we only consider regular estim ato rs .1 

Regularity conditions which are typically imposed on an estim ato r sequence to rule 

ou t superefficiency, may be found in B ahadur (1964) or van der V aart (1989).

In his sem inal paper, Stein (1956), first proposed the idea of com puting nonpara­

m etric efficiency bounds by using param etric  submodels. The basic idea is as follows. 

Let /?0 € R  be the  param eter of in terest and tj0 be a finite dim ensional nuisance pa­

ram eter. T he objective is to com pute efficiency bounds for 0o, when t}0 is estim ated 

nonparam etrically. Now as Stein (1956) points out,

. . .  a  nonparam etric  problem is a t least as difficult as any o f the  param etric  

problems obtained by assuming we have enough knowledge of the unknown 

sta te  of n a tu re  to  restrict it to  a  finite dimensional set.

^ o r  the definition o f  a regular estimator, see Definition 3.4.1.
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In fact we can restrict the unknow n sta te  of nature to  a  one dimensional set. It 

is instructive to  see how this is done since the procedure generalizes in a stra igh tfo r­

ward m anner to  the  case when 30 is multidimensional and  r]Q an infinite dimensional 

nuisance param eter. We consider the  example in Severini (1987).

Let X i , . . .  , X n be i.i.d. observation from a pdf g ( x , P i 0, . . .  ,Ppo). Suppose th a t  

the param eter o f interest is /?10 while the  nuisance param eter is rj0 =  (/?2o, • • • , PPo) 6 

R p-1. The vector of param eters to  be estimated is therefore (^ ‘0° ), and the vector of 

scores is ( ŝ  ). T he  inform ation m atrix  for this p dimensional param eter can therefore 

be partitioned in the usual m anner as

Using the partitioned  inverse form ula, the  Fisher inform ation for a regular estim ator 

of Pi is found to  be

As Stein pointed ou t, the same result can be obtained if we look a t an appropriate

Let t 6 [0,1] and  define /3t =  (30+t6,  for any 6 €  Rp. T hen  the param eter of interest 

is Pu =  Pio + tSi,  and the nuisance param eter is, 7?, =  (P2 o + tf>2 , - • • ,PPo + tSp). Notice 

tha t with this param eterization, estim ating  t is equivalent to  estim ating /3(.

W ith this one dimensional param eterization, the loglikelihood function for e s tim a t­

ing t from a single observation can be w ritten as £{/3t; X )  =  £(Pi0 4- t6i,rjt; X ). Thus 

the score for estim ating  t is given by

(2.3.1)

one dimensional param eterization of the  nuisance param eter. This may be shown as 

follows.
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5t|«=0 = ^ ( /? n , . . . , /3pt;X)|(=o 

y "  di((30)

S i r 4
_  m m  . , , ,
"  1 l i f t -  + 5”

where 6 - 1  =  . • , 6 P/ S i)  € R p_1. The F isher’s information for es tim ating  /3i

(denoted by ipia) is then  given by

7 - n r ? ’ _  El0ia ^^010 fj 2

=  e  f  + s;
V d h

Now find the  direction <5_t €  R p-1 which gives the  least possible inform ation for 

estim ating /?i, and denote th is least information by i0lo. 2 Then letting  S l3l = d-g p ° \

=  i„f
s - is s * -1 ( fl/9 + 5 ^ ~ 1)  ’ th a t’

—6 - i  =  pro j(5^ ,|co lum n space of 5,,).

T hat is, the  optim al value of S - t is given by 6'_l =  E ( S q S ,tt)~lE S tlSpl which after 

a  little algebra yields,

= ESI, -  (e s „,s;) [e s , s ;]~‘ (e s ;S„,)

101 — ^0lt^TtT) ll]0\l

2In the literature, ipl0 is referred to as the marginal Fisher information for /?i.
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and this is the sam e as (2.3.1).

2.4. Extension to the Sem iparam etric Case

We will now extend the one dimensional param eterization , given in the previous 

section, to th e  case where the  nuisance param eter lies in an  an infinite dimensional 

cone. As will be seen later, the cone structu re  is useful as it incorporates the shape 

restrictions im posed on the nuisance param eter. In order to  deal with the conical 

structure  of the  nuisance param eter space, we need to  define the following term s.

D e f i n i t i o n  2.4.1 ( C o n e ). Let A  be a  vector space over R . A subset C  of X  is called 

a  cone iff for any  c £ C ,  and any A > 0 we have Ac £ C.  □

D e f i n i t i o n  2.4.2 ( F r e c h e t  D e r i v a t i v e ). Let T  be a  transform ation defined on an  

open dom ain U in a  normed space X  and having range in a  norm ed space Y .  If for fixed 

x £ U and each h £ X  there exists a  linear and continuous opera to r L £ C { X , Y )  such 

th a t

Um \\T(x + h) -  T ( x )  -  Lh\\ _  Q 
ll*ll-o \ \ h \ \

then T  is said to  be Frechet differentiable a t x.  The o pera to r L,  often denoted by T ' ( x ) ,  

is called the Frechet derivative of T  a t x.  □

R e m a r k  2 .4 .1 . N o te  that since the lim it is taken as ||/i|| —*■ 0, we on ly  have to  consider  

arbitrarily sm all perturbations h £ X .  □

D e f i n i t i o n  2 .4 .3  ( T a n g e n t  V e c t o r ). Let M  be a  su b set o f  a Banach space X .  A  

vector x  £ X  is said to  be tangent to  th e  set M  at a poin t x 0 if  there exist an e0 >  0 and  

a m apping t r (t )  o f  th e  interval (0 ,eo) into X  such th a t
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x0 4- tx  4- r(t )  G M ,  for all t  G (0, c0)5 and,

_  0 as t - +  0 . □

D e f i n i t i o n  2.4.4 ( A d m i s s i b l e  C u r v e ) .  In th e  above definition, let 7 (t) =  x0 +  t x  +  

r(t).  T hen  7 is said to  be an admissible curve in M  th rough x0. It has the property  th a t 

7(0) =  xQ, and 7 '(0) =  x is the tangent vector to  M  a t  x0. □

D e f i n i t i o n  2.4.5 ( T a n g e n t  C o n e  a n d  T a n g e n t  S p a c e ) .  The set of vectors which 

are tangen t to  a  set M  at the point x0, is denoted by T ( M ,  x0), and, is a closed non-em pty 

cone. T his cone is called the tangent cone to  M  a t  x0. If this cone is a subspace, then  it 

is called the  tangent space to M  a t x0. □

R e m a r k  2.4.2. An equivalent characterization o f tangen t vectors and tangent cones is 

given in A ppendix A. This appendix also contains several useful results about tangent 

cones th a t  are used subsequently. □

We now re tu rn  to our original problem. So let /30 be a  real valued param eter of 

interest in an open set B c K ,  and /*  be the tru e  value of the nuisance param eter. 

Furtherm ore, let / ’ G J7, where T  is a convex cone in a  Banach space H  and assum e 

th a t th e  param eter space B x T  is param eterized by the curve 0  i-> ( / J ,^ )  such th a t  

% 1/3=00 =  /*• N °w let t be an admissible curve in B through /30. Any point in 

the param eter space B x f  then has coordinates (/3t ,T]0t). Again note th a t w ith this 

param eterization , estim ating t is equivalent to  estim ating  (0 t ,r]0t). Now consider the 

following assum ption.

A s s u m p t i o n  2.4.1. Let the score funct ions be elements  o f  the Hilbert space £ 2( B ) ,  where 

D  is the probability measure induced by the data. □

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

13

This is very useful since the geometry of H ilbert spaces facilitates the solution 

of projection problem s which we shall soon encounter. T he Fisher inform ation for 

estim ating t is then  given by,

'dt(Po,riPo) , de(/30,T]p„ ) , d _ ;  
~ d 0  +  fr] [ d 0 T,0o).

Let ip be the Fisher inform ation for estim ating 0 . Then since (3 is a  function of t , an 

application of the  chain rule gives,

E
ip = =  E

^(Po,r i0o)d£{/3o,r}0o) d
<W J- )ap dr]

ine(Pt,V0,)\t=o

(^L)
Since ip depends upon rjp only through the tangen t vector jpVffai the tangent vector

S'  which gives the  least information for estim ating 0  is

S' = argm in E dt(0o,Vpo) , dWoiVpo), d _ , 
+  — ;  ( j g m . )

2

d(3 drj

T h a t is, —1%ys,)\ S’ ) is the  projection of 0nt 0 ae(a° ^ 9 ) ( T ( T ,  / ' ) ) .  Therefore,

since we are optim izing in a  Hilbert space, S'  is characterized by the necessary and 

sufficient conditions given in Theorem H.3. T h a t is,

(i) +  ££(^ (6 ' )}a- Z ^ ( S ' )  =  0, and,

(ii) E [ ai{0oa^ o ] +  a-l{-^ - ’* \ 8 ' )}a- {̂ ^ {8) >  0, for all S 6 T ( F , f ' ) .

Now let,

ip0 =  E di(Po,VPo) + dt({3o,VPo)^ . j 2
d0  dr\

T hen following Stein (1956), i j*  is a lower bound for the asym ptotic  variance of any 

regular estim ator of 0.  This is verified in Severini (1987) for the  case when the tangent 

cone is actually a  linear space. But w hat happens when T { T , f ’ ) is a proper cone,

i.e. when T ( .F ,/* ) is not a  linear space? To answer this question, let l i n T ( ! F ,/* )  

denote the smallest closed linear space containing T { T , f ' ) .  Also, let
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i c = argm in E 

it =  argmin

' d£(Po,Vf )o)  , M ( P o , V f f a ) ,  d  _  J 2 

~T&  +  fr ,  {d p ^ \

de(P0,T)f,Q) d£(Po,VPo)( d  _ x' 
+  HZ------

T?ne0elinT(F,f) d p  drj dP

Then since T ( F ,  /* )  C /znT '(.F ,/* ), i f 1 < i f 1. T h a t is, a  projection on the tangen t

cone T { T ,  /* )  seems to  yield a  be tter lower bound as com pared to  the one ob tained

by projecting th e  param etric scores on HnT{!F , /* ).

However, w ith  the  help of two param etric  examples in the  next section we will 

show th a t a p ro jection  on the tangent cone T(!F,  / " )  leads to  a  lower bound which is 

either

(i) too optim istic  for the  m.l.e. of P0, or

(ii) which is ac tually  beaten by the m .l.e..

But if the  p ro jection  is taken on l inT( !F ,  /* ), not only is the  efficiency bound so 

obtained a valid lower bound, but we will also be able to construct regular estim ators 

th a t actually achieve this bound. Hence the space on which the param etric scores

should be p ro jected  to  obtain the efficiency bounds is l i n T ( F , /* ) , and not T ( T ,  /* ) . 

These results will be extended to the sem iparam etric case in Section 3.3.

Notice th a t  if we project the param etric  scores on l i n T ^ , /* ), the projection S’ 

is given by the  necessary and sufficient conditions o f Theorem  H.2. That is, for all

6 e l i n T ( F , f •),

E rdl(Po,r)0Q) + dtjP^T)^) d l j P o , ^ ) ^  _  Q 
d p  dr] drj

2.5. Shape Restrictions in Simple Linear Regression

In the following examples, we impose m onotonicity and convexity in the fram ew ork 

of simple linear regression to see how the imposition of such a  shape restriction affects
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th e  efficiency bounds fo r the  param eter of in terest.

E x a m p l e  2 .5 .1  ( M o n o t o n i c i t y ) .  Consider th e  following linear regression,

Vi — do + AoZi +  i — 1 , . . .  , n.  (2.5.1)

Here £ =  N IID (0 ,1), and z  is a  random variable w ith positive variance th a t is independent 

of e. T he param eter of in te rest is 90 6  (—oo, oo), and the nuisance param eter is A0 € A =  

[0 ,oc). T h a t is, we w ant to  fit an increasing line to the  i.i.d. observations (y , z). Then 

following th e  procedure in  Section 2.4, we obtain  Table (2.5.1).

T a b l e  (2 .5 .1 ). Lower Bounds for Estim ating 90

Nuisance P aram ete r T(A,Ao) Lower Bound
A0 =  0 
Ag >  0

[0,o°) 
(—oo,oo)

1 /E  [1 -  Z  min{0, (E  Z ) /E  Z l }]Jj 
E Z 2/(V a rZ )

Notice th a t  the  efficiency bound depends upon the  true  value of th e  nuisance param eter 

A0. Let us now see if the m .l.e. of 60 achieves these bounds.

So define S zz =  £ " = i(a,- -  zn )2, zn =  £ H " = i z i, z 'z  =  H ”= i zh  a n d le t  denote the 

m.l.e. of 0Q. Then,

» _  f  Vn ~  Anzn if An >  0

n _  \ y n if An <  0 ,

w ith An =  H ”_i(2 t- -  zn) y i / S zx. Now letting <£(•) denote the p.d.f., and $ (•) the c.d.f.

of a  s ta n d a rd  normal random  variable, it can be shown th a t conditional on observing

z i , . . .  , zn ,

r t y / S „ / z ' z  p - u 3/ 2  ,-------------------  ,---------------------

P r{ n 1/2(0n - 9 0) < t }  = /  f—  $ (7 i1/2A0a /z /z /u  -  zn J n / S zzu)
Jus—oo v 27T

+  $ ( - n I/2A0^ /5 zz/n )  $ ( i  -  n l/2\ 0zn ).

du

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

16

T hen letting F ( w ) =  # ( u ) $ ( —u ^ j ^ ) rfu, we can show th a t

_  , 1  <  A  J i * ( 0 + £ ( 0  if A° =  0
( n o ) S  } if A0 >  0,

and  th a t  the asym pto tic  variance

{l / i  [ IEZ 2 \  1 ( E Z ) 3 ; f  a _ n
V* » ^  2TVarZ -c \ _  n ^2 -5 '2 )
v w  11 A° > u ’

R e m a r k  2.5.1. (i) When E Z  ^  0,

, 1 , E Z 2 . 1 (E Z )2 E Z 2
1 <  o ( !  +  7 7 ^ ? )  ~  T r - T T - i r  < -------2 Var Z  2tt Var Z  Var Z  ’ 

and the asym pto tic  variance is no t continuous at A0 =  0.

(ii) Also notice th a t  when A0 =  0, the  asym ptotic d istribu tion  of the m.l.e. is not 

normal. □

T he results ob tained  above are presented in tabular form below.

T a b l e  (2 .5 .2 ). Imposing M onotonicity in Linear Regression

E Z 0̂ Lower Bound en
E Z  =  0 
E Z  >  0 
E Z  < 0 
E Z  =  0 
E Z  > 0 
E Z  <  0

O
O

O
O

O
O

 
II 

II 
II 

A 
A 

A
O

O
O

O
O

O

A ttained  by the m.l.e. 
Not a tta in ed  by the m.l.e. 

B eaten by the m.l.e. 
A tta ined  by the m.l.e. 
A ttained  by the m.l.e. 
A ttained  by the m.l.e.

N ot Regular 
Not Regular 
Not Regular 

Regular 
Regular 
Regular

R e m a r k  2.5.2. A  brief description o f the  results in Table (2.5.2) follows.

(i) W hen A0 =  0, the efficiency bounds are attained only when E Z  =  0. W hen 

E Z  0, th e  bound is either not a tta ined  (when E Z  >  0), or is actually beaten by 

9n (when E Z  < 0). However, it m ay be shown th a t in all these cases the estim ator 

6n is not regular.

(ii) When A0 >  0, not only is 9n regular, but it also a tta in s  the  lower bounds. Now 

the tangen t cone T(A, A0), when A0 >  0 is (—00, 00). But ( —00, 00) is also the
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smallest closed Unear space containing [0, oo). Hence, if we restrict ourselves to  the 

class of regular estim ators, the space on which the projection is taken  to  obtain  

the efficiency bound should be H n T (A . , \0), ra th e r th an  the tangen t cone itself. 

P rojection on th is larger space will lead to  bounds th a t  can be a tta ined  by regular 

estim ators. To do any b e tte r, we would have to  use an estim ator th a t  is not 

regular. □

E x a m p l e  2.5.2 ( C o n v e x i t y ) .  We now impose convexity in Unear regression. This is 

easily done by substitu ting  Z  = X 2 in the previous exam ple. Thus the shape restricted  

regression now becomes,

y( = 90 + X0x 2 +  i  = 1, • • • , n,

under the  same conditions as before. Notice th a t  imposing the restriction A0 >  0, now 

impUes th a t we are fitting  a  convex function to the  da ta . We now have the foUowing

results, which are stronger th an  those obtained in the  previous example.

T a b l e  (2 .5 .3 ). Imposing Convexity in Linear Regression

Ao Lower Bound 8no 
o

II 
A

o 
o

Not a tta ined  by the m .l.e. 
A ttained by the m .l.e.

Not Regular 
Regular

As before, when A0 >  0, the  efficiency bound is a tta ined  by 8n. However, when A0 =  

0, the efficiency bound is not atta ined . These results once again show th a t to  obtain  

efficiency bounds which are a tta inab le  by regular estim ato rs, the  projection m ust be taken

on l i n T ( A, A0), ra th e r  th an  the tangent cone T ( F , /* )  itself. □

2.6. Scalar Parameter o f Interest

W ith the previous section in mind, we are now in a  position to deal w ith scalar 

param eters of in terest. So let /3q be an element o f an open set B C R . / '  € T  is the
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tru e  nuisance param eter, where F  is a  convex cone in a Banach space H.  Assume 

th a t  th e  param eter space B x F  is param eterized by a  sm ooth curve /? i—► (/3, t j b )  such 

th a t  T)p |/j=0o =  /* , and let

S’ = argm in
d£{Po, VPo) , 9£(Po, Tj0B) d  n2 
~ d P  +  d~rj { d 0 mo).

R e m a r k  2.6.1. The direction S’ is the projection of the score of th e  param eters o f

in terest onto l i n T { F , / ’ ), an d  is called the least favorable direction for estim ating  P0. A 

curve rip which gives rise to  th is  tangent vector is called a  least favorable curve. However, 

T)p m ay not necessarily lie in th e  cone F .  For instance, let F  be the set of all C2(Z ) - concave

functions, and let /*  be affine. T hen from Section 3.7 we have l i n T ( F , /* )  =  C2(Z), and

therefore suppose th a t S' G l i n T ( F , /* ) is a s tric tly  convex function. Then the curve 

At =  /*  +  tS'  has S’ as the tangen t vector and A0 =  / ’ , but At being s tric tly  convex does

not lie in F .  But since l i n T ( F , f *) C l inF ,  we can always find a  curve in H n F  which 

gives rise tc  the least favorable direction S'. We call this curve, a  least favorable curve. 

Notice th a t  while Theorem  H.2 implies th a t the least favorable direction is unique, no such 

im plication holds for the least favorable curve. For instance, the curves t ►-»•/’ +  tS' and 

t ►-*■/’ +  t{t + 1)5’ give rise to  the sam e least favorable direction a t t =  0.

Hence, we have the following definition.

D e f i n i t i o n  2.6.1 ( L e a s t  F a v o r a b l e  C u r v e  a n d  D i r e c t i o n ).  Let,

B x l i n F

be param eterized by a sm ooth  curve 0  (/3, rjp) such th a t , T]p\p=p0 = /* .  T hen t]0 G l i n F

is said to  be a least favorable curve for estim ating /3o, if jpVPa £  H n T ( F ,  /* )  minimizes

„ rd£(j3o,rip0) n  ^ rd£{P0,rip0) , dl{(30 , V p a ) ( d  . a

E [— Tp— ] = E [ — +  —
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Moreover, the  direction jgTjga £ U n T { F ,  /* )  is called the least favorable direction for 

estim ating f30. □

R e m a r k  2.6.2. (i) Let ^r]p0 be the  least favorable direction for estim ating /30, and

define

^ r9£(Po,Tj0o) , di(f30,r}pa) d , l2
=  E !— w —  — &n— ( d 0 ne°) ] '

Then iga is called the sem iparam etric inform ation for /30, a n d  it may be shown th a t  

igol is a  lower bound for the asym ptotic  variance of any regular estim ator o f /30- 

See for instance, van der Vaart (1989).

(ii) If T  is a  linear space, then T { T ,  /* )  =  l i n T ^ ,  /* )  =  T .

(iii) As m entioned above, U n T { F , /* ) C l i n T .  A sufficient condition for the converse to 

hold is th a t  /*  €  /*). This is so, because /*  need no t always be an elem ent 

of T ( T J ’ ). To see this, let A  = {1}. Then T (A ,1 ) =  {0}, but 1 £  T (A , 1). 

However, since this condition always holds for the cases which interest us, we 

assum e th e  following. □

A s s u m p t i o n  2.6.1. Let T  be a convex cone, and let /*  6 T . Then, /*  £ T ( T , f ' ) .  □

R e m a r k  2 . 6 .3 .  (i) Actually, this assum ption holds whenever T  is a cone. To see

this let T  be a  cone, and let /*  £ T .  Now consider the curve 7 (£) = /* +  * /" , for 

t > 0. Since T  is a  cone, 7 (t) £ T  for all t > 0. Also, 7' (0) =  f " .  Hence, 7( t)  is a 

curve in T  w ith /*  as the tangent vector. T h a t is, /*  £ T { T , f ' ' ) .

(ii) Furtherm ore, convexity of T  implies th a t  T  C T { T , f " ) .  This may be seen as 

follows. Since the tangent cone is the  smallest closed cone containing

T - f m, we have th a t  T - f ’ C T(JF, /■) or T  C T ( T , f )  + f m. But i f /*  6 T(JF, /* ) , 

then T  C , /* ) , since T ( F , f )  is also convex due to th e  convexity of T .  □  

Therefore, under this assumption we can show th a t whenever !F is a  convex cone.
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L e m m a  2.6.1. l in T ( J : , f m) =  l i n T .

P r o o f . See Appendix H. □

2.7. M u lt id im e n s io n a l  P a r a m e te r  o f  I n te r e s t

Now suppose tha t /30 6 B° C Rp. The nuisance param eter / '  is once again

an elem ent o f T ,  a convex cone in a  Banach space 7i .  Assume th a t  B  x  l i n T  is 

param eterized  by a sm ooth curve /3 >-+ (f3,r)p) such th a t  77\p=p0 =  /* . We then  have 

the following definition.

D e f i n i t i o n  2.7.1 ( L e a s t  Fa v o r a b l e  S u r f a c e ) .  Let t  ^  (3t be any admissible curve 

in B  th rough  (30. Then tj^ is called a  least favorable surface for estim ating /30, if r}pt is a 

least favorable curve for estim ating  t. T ha t is, r}pt minimizes E □

Using th is definition we can ob tain  the following theorem s of Severini (1987). These 

theorem s therefore extend Severini’s results for the  case when the nuisance param eter 

is restric ted  to  lie in a cone. These results are also o f interest because they show 

th a t dealing with a p dim ensional param eter of in terest is equivalent to  to  solving p 

individual optim ization problem s. The proofs o f the following theorem s are provided 

in A ppendix B for the sake o f  completeness.

T h e o r e m  2.7.1. Let r]p be a least favorable surface fo r  estimating f3. Denote the least 

favorable direction 3 by 6 '  =  (-^T)p)\p=po. That is, 6■ = (^Tfp)lp=/3 0 fo r  i =  i , . . .  ,p. 

Then, 6 '  =  ( d j , . . .  ,6 ’ ) satisfies

E ' M ( P o , V p 0 )  , ^ ( / 30 , 77̂ o) 

d/3i Or] [ 1 }.
=  0i

OT]

fo r  all 6 e  l i n T ( T ,  f"), and i =  1 , . . .  ,p .

3Note that the least favorable direction is now an element of x?=ll in T (T ,  /* ).
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T h e o r e m  2 . 7 . 2 .  rjp is a least favorable surface fo r  estimating (3, i f  and only i f  fo r  all

6{ €  l in  T ( T ,  /* ) ,  and i = 1 , . . .  , p,

± E
'9£(P0, i fc0) de{P0,T]f3a) d

1 =  1

, ’ip0j  ( w \
+ ------51------(TTTr^o)

9 Z ( P o , V f 3 0 )

* ,  ( < ) = 0 -3/3,- dr] d/3i

T h e o r e m  2 . 7 . 3 .  Let,

- d i ( p 0,ripo) d£ (p0,T]po) d ] \d £ (P Q,T]po) d£ (pQ,T)p0) , d
/  =  E

d p
, 9£ (p0,T]pa) f d _ f\ \d £ (P Q,T]po) d£(Po,y 0o) d 

+  ' i f ,  ( J 0 ’,e°)\ [ ~ d T ~  +  — Tn— ( d 0 ”3 j

be the information matrix when rjp is a curve in l in T ,  through / ’ . Then there exists a 

matrix Ipa such that ct'(Ipa —I ) a  < 0 fo r  all a  €  R p, i f f  Ipa corresponds to the information  

matrix when rjp is a least favorable surface.

R e m a r k  2.7.1. (i) This theorem shows th a t  a  least favorable surface r]p, minimizes

Fisher’s inform ation Ipo in the usual sense. T h a t is, for any o th er inform ation 

m atrix  I ,  the m atrix  difference Ipo — I  is always negative semi-definite. Following 

van der V aart (1989), Ip* remains a  valid lower bound for the asym pto tic  variance 

of regular estim ators of /30.

(ii) Furtherm ore, Theorem  2.7.1 and Theorem  2.7.3 together imply th a t to  find the least 

favorable direction in the m ultiparam eter case, we simply find the least favorable 

direction corresponding to each component of the param eter vector.
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CHAPTER 3

A GENERAL SHAPE RESTRICTED MODEL

3.1. Introduction

Consider the  regression y =  x/30 +  / ’ (z) -f s, with e =  N (0 ,1). In th is chapter we 

show how to  efficiently estim ate /30, when the only inform ation we have about /*  is 

that it has a  certa in  shape. T ha t is, we efficiently estim ate f30 when the only thing 

we know abou t / ’ is th a t it lies in T , where T  is a com pact set of functions w ith 

certain shape properties. These shape properties are such th a t  T  is a  convex cone. 

We examine tw o cases in detail. In th e  first case T  is the set of C2 - homogeneous 

functions of degree r ,  while in the second case the elements o f T  are C2 - concave 

functions. In each case we compute th e  efficiency bounds for es tim ating  /30, and also 

propose an es tim ato r th a t a tta ins these bounds. The efficiency bounds are shown 

to be determ ined by a projection onto l m r ( f , / ' ) ,  the sm allest closed linear space 

containing th e  tangen t cone to  T  a t /* . This tangent cone, denoted by T {F ,  / ' ) ,  

seems a t first sight to  be the natural space to  determine the efficiency bounds. How­

ever, we prove an  “impossibility” result showing that projecting onto  T { T , f " )  yields 

bounds th a t are not attainable by any n 1!2 consistent, regular estim ato r of /30. This 

“impossibility” result is used to show th a t in the class of all n 1̂ 2 consistent regular

estim ators of /30, homogeneity of /*  can lead to dram atic efficiency gains in estim ating

22
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/30, while concavity of /*  does not help in estim ating (30 m ore efficiently.

We now begin our study of a  general shape restricted sem iparam etric m odel by

analyzing the  partially  linear model. For i  =  1 , . . .  , n , consider the regression

Vi  =  x l i P  10 +  x 2 i02O  +  • • • +  Z pi PpQ  +  f ' ( z U i  z 2 i ) +  £■

A s s u m p t i o n  3.1.1. In the above model let,

(i) £ = iV (0 , <Tq), where cTq is known;

(ii) /30 =  (/3l0, . . . , / 3 p0) 6 B °, where B  is a compact subset o f  R p;

(iii) x  comes from  a distribution with compact support X in  R p. Similarly, z =  ( z \ , z 2) 

comes fro m  a distribution with compact support Z =  Z \  x  Z2 in R 2. Furthermore, 

x ,z  have a jo in t  density g0(-, •), which induces a probability measure G  on support 

Sq;

(iv) let 7i denote the set o f  all C 2 functions  on Z with uniformly bounded values, gra­

dients, and Hessians. Then  /*  €  T  C H, where F  is a closed, convex cone in Ti, 

and consists o f  functions that satisfy  certain shape properties;

(v) e and  (x , z) are independent, and we observe ( x , y , z ) .  □

R e m a r k  3.1.1. (i) The assum ption th a t Oq is known, is w.l.o.g. since it can be

shown th a t  the  efficiency bound is not affected by the  knowledge of erg. Therefore, 

we choose a \  =  1.

(ii) Since TL is a compact subset of C 2(Z) w .r.t. the C2 norm  and T  is a  closed subset 

of H , T  is also compact w .r.t. th e  C 2 norm. □

N o t a t i o n  3.1.1. Unless otherwise specified, || • || represents the  sup norm  in function 

spaces, and the  Euclidean norm in finite dimensional spaces. □
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3.2. Identification

T h e  question of identification, as has been pointed out m any authors, is logically 

prior to  th a t  of estim ation. T here  is no sense in estim ating  param eters which are  not 

identified. In this section we provide sufficient conditions under which the pa ram ete rs  

( /" , /3 )  are identified. As we shall soon see, param eters in the partially linear m odel 

are identified under fairly weak conditions.

Since we observe only the  3-tuple (x , y, z), the m ost th a t can be obtained from  the 

d a ta  is the  jo in t density of (x , y, z). The question o f identification then reduces to  

th a t  o f  recovering the true param eter values ( /* ,/3 0) from this joint density.

A s s u m p t i o n  3.2.1 ( I d e n t i f i c a t i o n ) .  Let,

(i) the vector f30 be without an intercept term, and

(ii) let the elements o f  the vector <p(x,z) =  x  — E (x |z )  be linearly G  - independent. 

That is, i f  a 'y j(x ,z ) =  0 f o r  G - a.a. (x, z), then  a  =  0 . □

R e m a r k  3.2.1. We exclude in tercept terms because they  cannot be identified in the 

partially  linear model. □

We then  have the following result, which was first obtained by Robinson (1988). 

For th e  sake of completeness, we provide a proof of th is result.

T h e o r e m  3.2.1 ( R o b i n s o n ) .  Let the partially linear model satisfy A ssum ption  3.2.1. 

Then, ((30, f m) is identified in (B,.F).

P r o o f . F irst notice th a t if the  true  param eter values are replaced by (/3, / )  s B x f .  

then

y -  E  (y |z; /3, / )  =  ^ (x , z ) - 0  + e.
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So to  show th a t (/30, / ’ ) is identified, let {j3y,fi)  and  {P2i h )  be two values of the true 

p a ra m e te r  ((30, f m) and let

E (» l* ;£ i> /i)  =  E (y |z ;/3 2, / 2).

B u t this implies th a t <p(x, z ) - ( (3 l — (32) =  0. And since th e  elements of <p(x, z) are linearly 

independent by assum ption, we have 0 l =  (32 which also implies th a t _/\ =  / 2. Therefore, 

(/3a, f ~ ) is identified. □

3.3. Efficiency Bounds for the Partially Linear M odel

Once we know th a t ou r model is identified, we can proceed with its asym ptotic 

analysis. Now since the  d a ta  generating process is

y{ =  x,-/30 +  /* (z ,) +  £i i = 1, • • • , n, (3.3.1)

th e  loglikelihood for a single observation is given by

Ix ,y ,z )  =  - i l o g ( 2 7 r ) -  i [ y - x / 3 0 - / * ( z ) ] 2 +  lo g so (x ,z ).

Now let (3 €E B  represent the  param eter of in terest, and let (3 (/3,r]p) be a sm ooth

curve in B  x l in T ,  such th a t  r}p\p-po =  /* . The vector (/3,t?^) is called a  param etric 

subm odel. The word param etric  here refers to  th e  fact th a t since the nonparam etric 

p a rt  is now indexed by (3, th e  estimation problem  is restricted to  finite dimensional 

o r param etric  space. T he term  submodel simply m eans th a t  (/3, T]p) is ju s t one of the 

several param eterizations th a t m ay be chosen. Notice th a t  the param etric  submodel 

passes through the tru th  when /3 = j30.

Assum ing th a t the d a ta  is generated by this param etric  submodel, the  loglikelihood 

function becomes

l{ fi ,T]p \x ,y ,z)  = — ̂  log(2x) -  x/3 -  ^ ( z ) ] 2 +  logff0( x ,z ) .  (3.3.2)
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Note th a t a t /30, th is loglikelihood function equals the tru e  likelihood. Hence the  

score function for 0  is,

Q. _  Tfo,)
/3° d/3

_ , d £ ( P 0 , T ] p B ) f  d  _  ,

=  —  +  — a ! —

Notice th a t  even though Spo is a  (p x  1) vector, from the discussion in Section 2.7 we 

know th a t it suffices to  look a t the  componentwise scores. Therefore, for i =  1 , . . .  , p, 

Sgl0 =  — e[x,- -f (^-7?qo)], with least favorable direction S' given by

S' =  argm in E [a:,--F £]2. (3.3.3)
e e  U n T ( T J ' )

Hence the efficient score 5 , for com puting the sem iparam etric efficiency bounds of 

0o is
f x  i -  

S  = £ :

\ x P -  S 'J

The m atrix  ( E S S ') -1 , then gives the  sem iparam etric efficiency bounds for regular 

estim ators of j30.

However, merely knowing the bounds is not enough. To be o f any use, the bounds 

m ust be a tta inab le . We now discuss the  construction of estim ators th a t achieve these 

efficiency bounds.

So let L n ((3,T]p)  =  5Z"= 1£(/3,»7/3|Xi,Pi,Zf) denote the em pirical loglikelihood func­

tion for the d a ta  generated by the param etric  submodel.

Now if we knew 77̂ , maximizing L n(/3,r]p) would lead to  an estim ate of /3, w ith 

asym ptotic variance depending on rjp. And since m.l.e. is efficient in the param etric  

case, the asym pto tic  variance of this estim ator would just be the inverse of the Fisher
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inform ation for /3. However, the  fact of the m atte r  is th a t  we do not know rjp, and  so 

straightforw ard m axim ization of the  likelihood is infeasible. To get feasible estim ates 

we adop t the  approach given in Severini and W ong (1992).

So fix /3, and let i)p deno te  a  consistent estim ator o f T)p. T hen  L n(/3, Tip) is called the  

profile (o r concentrated) likelihood for /3. We now show th a t  maximizing T„(/3, fjp) 

leads to  an  efficient e s tim a te  of (3, provided th a t f)p is an estim ator of a least favorable 

curve.

Since we want f3n — ob tained  by maximizing L n((3, f/p) — to  have the same asym p­

totic d istribu tion  as the  es tim a to r obtained by m axim izing L n(j3,rip), we require th a t 

Ln(PiVp)  and Ln(/3,rip) have the  same local behavior a t (3 =  (30. In particu lar, and 

this is evident from the  s ta n d a rd  way of proving asym pto tic  normality, we require

=  0p(i) . Bu t,

,-1/2 d L n((30, f)p0) d L n((30, Tjpg)
d(3 d/3

Now the  Frechet derivative

=  n - 1' 2

- 1 /2

d/3
d_

d(3

[L„(/30,f ipa) -  Ln(0,T]p)\  

\ d L n((3Q,r)po)
----------------------------------------------------------0 -  T]pa)dr)

1/2 d d L n(/3Q,T)p )
=  "  4 3 --------Tr,------- - ’>»■>>

T erm  I

i ’HPo) (  d ^ d \
+ U  Tri-------

T erm  II

d l( /3, 7fc ;x t- ,y ,,z l )
drj

= yi -  x,-/3 -  Tjp(Zi),

and therefore
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d d L n((3, rip)
d/3 dr) (Vf30 ~  T}pa) = {Vi ~  **0 ~  M z i)}

n r d
=  -  £  [ *  +  4 0 ^ ‘\

(Vp0f a )  -  W z«•))

( ^ 0(zi) -  r}Po(z i) ) .

Thus evaluated  a t (30,

U 1/27(3 =  " n_1/2 ^ ^  +  ^ o ( a . 0 ] ( ^ ( * . - )  -  *?#.(»*))•

Now suppose th a t  we can show th a t \[fjpa — rjpo\\ =  op(n  ° l ) for some ax > 0. So 

consider th e  sum

d
71-1/2 B x « +  ~  ^ o ) ’

«=i

If rip is chosen to  be a  least favorable curve, then  by Assumption 2.6.1 an d  the least 

favorable curve p roperty  of T)p

E ( x < +  ^ 0K l ( ^ 0 -  VPo) =  o.

and the  term s in th e  above mentioned sum a re  centered around their m eans. There­

fore, by applying a  uniform  CLT valid in function spaces

n ' 1/2D x '' +  ^ . K , ^ . - ^ o )  =  0 p(1)-
1 = 1

and this implies th a t

n 1/2B x < +  ~ V p 0) = op( l) .
i=i

Hence Term  I is op( l ) .  Now let us look a t Term  II. We again show th a t  if \\jp-V0o ~  

■jg-T)po\\ =  op(n ~ a:‘) for some q2 >  0 then Term  II is also op( l) .  To see this, first

notice th a t  by Rem ark 2.6.1 for any f  6 l i n T ( T ,  /* )  there exists a curve rjp £ l i n T  

with tangen t f ,  such th a t  r)po =  / ’ . Then by using the  unbiased property  o f the score 

functions
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o = E ^ ( / 3 „ , - t o , )

=  E [ » S ^ i  +  a S A d s l t t )]

=  E m ^ ) ( a

since js j ust the  param etric score function. Therefore, the terms in

__ l/2dL n{(30,T}Pa) _ ai ( d  . d _ \
n   d~n 71 W * - - ! ? * • )

are also centered around their means, and by applying a functional CLT we can again 

show th a t

_ l/2d L n{l30,T]p ) (  d  . d \
"  — 8 T ^ n -  d T N  =

implying th a t

_ - i/2  d L n((30, rip ) ( d  d  ^ ______ ^
n   Tn-------

Hence Term  II is also op( l ) ,  and

d/3
- 1 / 2  d L n ( P Q, TI/30 )

d/3
(3.3.4)

Therefore, if fjp is an estim ate of a least favorable curve, maximizing L n(/.3, fjp) yields 

the sam e asym ptotic  result as maximizing L n((3, rjp), and under certain  regularity con­

ditions we can show th a t \ / n ( $ n -  f30) -i- N (0 ,/^ o1), where Ẑ 1 is the  sem iparam etric 

inform ation for /30. Thus, in order to do feasible m aximum  likelihood estim ation, rjp 

must be a least favorable curve otherwise the  term s in Term I and  Term II will not 

be centered around their means. Hence we would not be able to  apply a CLT, and 

this approach would fail.

R e m a r k  3.3.1. Notice th a t this argum ent also indicates th a t to obtain  efficient estim a­

tors of /30, we need estim ators of the nonparam etric  p a rt (and their derivatives) th a t are
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consistent w ith rates of convergence faster than  n°. We will obtain  such convergence rates 

by using kernel estim ators. □

3.4. A n Im possibility Theorem

As the param etric  examples in Section 2.5 dem onstrated, when T(iF, /* )  is a  p roper 

cone projection on T { F , f ' )  led to  efficiency bounds th a t were unatta inab le  by the 

m.l.e.. In this section we m ake th a t  argum ent rigorous for sem iparam etric m odels. 

T hat is, we will now show th a t  if efficiency bounds for estim ating (30 are ob tained  

by projecting the param etric  scores on a  proper tangent cone, then no regular n 1̂ 2 - 

consistent estim ator of (30 can achieve these bounds.

N o t a t i o n  3.4.1. Let Xp be a  curve in T  such that Xpa =  /* , and let 6  be any vector 

in R p. □

The above m entioned result will be shown to hold under the following condition.

A s s u m p t i o n  3 .4 .1  ( P r o p e r  T a n g e n t  C o n e ).  Let the matrix I x - 12 be negative def­

inite, where,

inf E
^exJU/mrc-F,/')

h  =

rW o , a^ )
d/3 +  d \

\ d i { ^ X 0o) +  di(/3  p.Aft,) '
d(3 d  a

and,

inf E
€ e x f = , r ( ^ , / - )

U =

\d i(/30,XPo) +  M ( /3 o , \Q  1
d/3 d  a

\de(/3o,X0o) dl{(3 o .A ft) ■
d/3 dX

□

R e m a r k  3.4.1. (i) In the above assum ption, the infima are taken w .r.t. th e  usual

order on the space of all p x p  m atrices. From Theorem 2.7.3, I x and U exist if A po is
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a  least favorable curve in l i n T  and T ,  respectively. Therefore, a necessary condition 

for th is assum ption to  hold is th a t the least favorable directions in x p=ll in  T ( T ,  /*) 

and  x p=lT ( T ,  f" )  be different.

(ii) This condition certainly holds for the param etric examples provided before. It also 

holds for the  sem iparam etric models under study. For instance, let T  be  the  set of 

concave functions in H ,  and let /*  be affine. T hen  as can be seen from Section 3.7, 

I 2 is achieved by a tangen t vector which is a  concave function in H ,  while I x is 

achieved by a  tangent vector which is ju st a  conditional expectation subject to 

sm oothness conditions. □

Before we s ta te  the main result of this section, we define what we m ean by a 

“regular” sequence of estim ators.

D e f i n i t i o n  3.4.1 ( R e g u l a r  E s t i m a t o r ) .  Let f3n =  /30 +  n ~ l/26. Then a  sequence of  

estim ators /3n is said to  be regular if n1/,2(/3„ — (3n ) converges in distribution, under /3n. 

to  a  lim iting d istribu tion  th a t does not depend upon 6. □

R e m a r k  3.4.2. Let be any curve in C2(Z) th rough  T h a t is, ^  €  C 2(Z ) for all

/3 6 B , and £po =  /* . Now pertu rb  (3 such tha t the pertu rbed  value, denoted by /3n , lies 

in a  n ~1/2 neighborhood. T h a t is, for any S 6 Kp, /3n =  /30 -f- n ~ ll 26. Then by the  mean 

value theorem

^  =  r + n - 1/2d ' ^ 3n ,

where, /3„ lies between /30 and f3n . Therefore, n ~l/f2 pertu rbations of the finite dimensional 

param eter generate  7i-1 2̂ perturbations of the infinite dim ensional param eter. However, 

it is clear th a t if f ' ^ T c  C2(Z ), the perturbation need not lie in T . □

T he m ain result of this section is the following theorem .
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T h e o r e m  3 .4 .1 .  Let F  be a convex cone in H , and let /*  €  d T  be such that the tangent 

cone T ( T ,  /* ) is a proper cone. Then under Assum ption  3 . 4 .1 ,  no regular n 1/ 2 consistent 

estimator o f  /30 can achieve the efficiency bounds obtained by projecting the parametric 

scores onto the tangent cone T ( ! F , f ' ) .

P r o o f . See Appendix C. □

R e m a r k  3.4.3. T he u tility  of this result will become evident in Section 3.7, when we  

impose concavity upon / “. In Section 3.7

T  — { /  € Ti : /  is concave},

and T  is a  proper cone, i.e. it is not a linear space. Now suppose th a t f '  lies on the 

boundary  of T ,  say for instance /*  is affine. As can be seen from Secref 3.7, when /*  

is affine T(!F. f ' )  =  T .  Hence by Theorem 3.4.1, p ro jection  of the param etric  scores 

onto T ( T , f m) will lead to  efficiency bounds th a t are unatta inab le  by any regular n l/2 - 

consistent estim ator of /30. To obtain  attainable efficiency bounds, we have to  p ro ject onto 

H n T { T , /* )  which is ju s t TL. Hence, concavity of /*  does no t help us in estim ating  /30 

more efficiently. □

3.5. C onsistency and A sym ptotic N orm ality o f 0n

Closely following Severini and Wong (1992) in this section, we will show that 

the estim ator /3„ obtained by maximizing the profile likelihood is consistent and 

asym ptotically normal.

N o t a t i o n  3.5.1. W ith  L n(/3,Tjp) as defined before, let,

LniPmVp ) = s u p L n(/3,fi0 ). □
P € B

R e m a r k  3.5.1. Unless otherw ise specified, all expectations are taken under the tru th  

i.e. under (/30,/* ) .  □
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A s s u m p t i o n  3 .5 .1  ( I d e n t i f i c a t i o n ) .  Let

K(/3,/30) =  E £ ( / 3 ,q p ; x , y , z ) - E e ( / 3 0, f ’ ; x , y , z ) .

Then,

(i) K(/3,/3o) < 0 ,  i / / 3 # / 3 0.

(ii) /30 is the unique global maximum o f  K(/3, /30). That is,

sup E ^(/3 ,77̂ ; x , y , z )  =  E£(/30, / * ;x ,  y ,z ) . □
/3g B

R e m a r k  3 .5 .2 . Because we had shown th a t /30 was identified in Section 3 .2 , this as­

sum ption holds for the  partially linear model. □

A s s u m p t i o n  3 .5 .2  ( S m o o t h n e s s ) .  F o r i , j  =  1 , . . .  ,p, let

(i) E suPp6B S up ,6j^ | ^ ™ i | 2;► <  00,

(ii) E SUP/3gB SUPrjg7fir?
ia3i(/3,i);x.y,z)|2

d0,8 rj 1 } <  00,

(iii) E SUP/3gB suPr;e7T̂ 3r
d3l(P,ri;x,y,z) |2 } <  00,17 1

(iv) E suPpgB suPrjeri«3̂
S3l(0 ,ri\x,y,z) 12

} < 00,8ijJ 1

(v) E SUP/36B SUPr|6/7n^
S3l(0,y\x,y,z) 12

aa.a>)3 1 } <  00. □

R e m a r k  3 .5 .3 . Let us verify (i). O ther conditions can be similarly checked. Since the 

Frechet derivative =  y  — x/3 — qp{z),

d£(/3,Tj0 ; x , y , z )
drj

< 2\y -  x 0 \ 2 + 2 \ t ) 0 { z ) \ 2

< 4 |y | 2 +  4p2 | |i | | | | /3 ||  +  2 177̂3 ( z ) |2.

Hence, for all  z
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E  < sup sup 
I 0€Bnen

d i ( P , i ] p ; x , y , z )  2
< 4 E \y\2 +  4p2 sup ||x || sup ||/3|| +  2 sup |7/|2

dg

<  oo,

since (x , z, (3, tj) all come from com pact sets. □

A s s u m p t i o n  3.5.3 ( N u i s a n c e  P a r a m e t e r s ).  Let a  least favorable curve be given by 

gp, and let gp be a consistent estimator of r/p. Then fo r  some a 1?a 2 > <5 > 0, and

i =  1 , . . .  , p ,  assume that

(vi) sup^gB supu „gZ | j jfip(u , u) -  ~^rjp(u, u)| =  op(n~s), f  €  {u, v) ,  and

(vii) sup/3gBsupu ugZ| ^ ^ : ^ ( u , t ; ) -  ^ ^ - r ) p ( u ,v ) \  = op( n - s), £ e  { u ,u } . □

VVe then have the following results.

T h e o r e m  3 . 5 .1 .  /3n f30, as n  -*• oo.

P r o o f . See Appendix D. □

T h e o r e m  3 . 5 .2 .  n 1/2(/3n ~ / 3 0) - i -  N ^ , / ^ 1).

P r o o f . See Appendix D. □

T h e o r e m  3 .5 .3 .  /3n is regular.

P r o o f . See Appendix D. □

CO s u p u v \f /po ( u , v )  -  T]po ( u , v ) \  =  o (n -“ l ),

0 0  suPu,v \ ^ V i 3 0( u , v ) -  ^ T j p g(u ,v ) \  = o(n~“a),

(iii) su p ^ Q  supuugZ \ftp{u, v) -  rjp(u, r) | =  op( l) ,

(iv) S U p ^ g B S U p ^ g z l^ -^ ^ u )  -  ^ T ) p ( u , v ) \  =  Op( 1),

(v) SUp^gB sup„ „gZ \ - £ i f / p ( u ,  v )  -  - f iTT)p(u,  r ) | =  Op( l) ,
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3.6. The Case o f  H om ogeneity

Let us now examine how certain  shape restrictions on the unknown function, th a t 

are  im portan t in economic theory, influence the efficiency bounds for finite dimen­

sional param eters. We begin w ith the case when /*  is a homogeneous function of 

degree r.

So let T  be the set of functions in H  which are homogeneous of degree r ,  i.e.

^  = { / € « : / (  Az) = Ar/(* ) ,A > 0 } .

Then the solution to  (3.3.3) is a  projection of x,- onto l i n T ^ ,  /* ). Since T  is a 

closed linear space, from Corollary A .l we have T { T , f ’) =  T  which implies that

l i n T ( T , f ~ )  =  T .  Therefore, we simply project x,- onto T .  The solution to  this 

projection problem is given by the  following theorem .

T h e o r e m  3 . 6 .1 .  The projection  o f  x,- onto T  is the function

vr E ( x i Z ; \ ^  = *■)Cm/ \ V '
E ( * r i£  = a) •

P r o o f . See Appendix E. □

R e m a r k  3 . 6 .1 .  No t ice  t h a t  i f  w e  h a d  t a k e n  t h e  projec t ion  as 1 — “ t *ie
\ l I ”  B '

uniqueness o f the projections (postu lated  by the  classical projection theorem ) would imply 

th a t

ttrE(s.-sn£ = a) WEfcaSlf^)
E(*rift = 7) E(*rift = *) ‘

T h a t th is is indeed the case, can be seen as follows.

^ h a t  this is a valid projection can be seen immediately, since this also satisfies the necessary 
and sufficient conditions o f the classical projection theorem.
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E (* f |s  = r) E ( ^ f | s  = ?)

= £ £ E H j S _ 2 l l  

£ E =? )
_  v'i, ( x , 4 | s  = ; )

E (^r|s = ?)
This is a  nice tes t of the  validity of th e  result obtained in Theorem  3.6.1. □

From Theorem  3.6.1 the  efficient score S  for com puting the sem iparam etric effi­

ciency bounds o f /30 is

S  = s

Xi -

z7 ®
x p

The m atrix (E S S ' ) ~ l , then gives the  sem iparam etric efficiency bounds for (30 w hen 

the true function / ” is homogeneous o f degree r. A n a tu ra l question at this point is 

to inquire about the  gain in efficiency obtained by imposing the shape restriction of 

homogeneity. T he following example provides an interesting case in point.

E x a m p l e  3.6.1 ( H o m o g e n e i t y  I n c r e a s e s  E f f i c i e n c y ) .  Let /3 €  R 2. O ur m odel is 

then y  =  Xi0i +  x 2fl2 + f ' { z x, z 2) +  e, w ith  £ = N (0 ,1).

To simplify m atte rs  even further, let z x — z2 =  z, and let x  =  ( x i ,x 2) be com pletely 

predictable by z. Say for instance, =  z 2 and x 2 =  z3. T he  model then reduces to

y  =  z 2f3x +  z 3/32 + f ' ( z ,  z)  +  £.

Now consider the following two cases.

C a se  I: No shape restrictions on /* .
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T h a t is, ju s t assum e th a t /*  €  H .  We claim  th a t  in this case, (0 i , 0 2, / ’ ) is not identified. 

To see th is , let g be the joint density of (y ,  z) and define

51 = ( / ? ! , & , / ”)

5 2 =  ( a i , a 2, h ’ ).

T hen if we can show that there exist struc tu res S i ,  S 2 w ith Si  ^  S2 such th a t  g (y ,  z ; 5 i) =  

g ( y , z ; S 2), ( 0 i , 0 2, f m) is not identified. So let Si  =  (1 ,0 , / * ( z ,  z ))  and S2 =  (1, l , f " ( z .  z ) -  

z3). C learly  S i  ^  S 2, and since g(y, z ) =  g(y \z )g (z )  we have,

g { y ,z \  Si)  =  (27r)~1/2e x p { - ^ ( y -  z2 -  z3 • 0 -  /*  (z, z ) f } g { z )

=  (27r)"1/2e x p { - i ( y  -  z 2 -  f ’ ( z , z ) ) 2}g(z)  and, 

g ( y , 2; 5a) =  (2rr)-l/2 e x p { -^ ( y  -  z 2 -  z 3 -  / ' ( z ,  z ) +  z 3)2}g (z)

=  (2 tt) - 1/2 e x p { - i ( y  -  z 2 -  / ' ( z ,  z ) ) 2}$ (z ) .

Therefore, <7(2/, z ;S i) =  g ( y , z ; S 2) and so ( 0 i , 0 2, f m) is not identified. It is not difficult 

to see th a t  th is also implies th a t both  ( 0 i , 0 2) and /*  are separately not identified. Due 

to th is lack of identification, the lower bound for the  variance of any estim ato r of ( 0 X,0 2) 

is (oo, oo).

C a s e  I I :  Now let /* be homogeneous of degree 1.

Since / '  is homogeneous of degree 1,

y — z 20 1 z 30  2 +  * /"(!>  1) +  c.

But this clearly  shows th a t in this case ( 0 X, 0 2, f m( l , l ) )  is identified. Therefore, the effi­

ciency bounds for estim ators of 0 X and 0 2 are finite.
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Hence, by imposing a  shape restric tion  on /*  we can identify the finite dimensional 

param eters  and achieve a  dram atic gain in efficiency. □

R e m a r k  3.6.2. Even though this exam ple has an artificial flavor, it illustrates the po­

ten tia l gains in efficiency th a t may be obtained  by imposing shape restrictions. An interest­

ing exercise here would be to examine w hat shape restrictions on / ' ,  besides homogeneity, 

allow us to  identify /3. Notice th a t this exam ple also illustrates the  s tren g th  of homogeneity 

as a  shape restriction. □

Here is another example dem onstrating  th a t large gains in efficiency are possible 

under homogeneity, even when the  param eter of interest is identified.

E x a m p l e  3.6.2 ( A n o t h e r  S i m p l e  E x a m p l e ) .  For ((30, z )  e  R  x  R , and e = N (0,1), 

let y  =  x/30 4- f ' ( z )  +  £, where x , z  = UTID (0,1), and /*  is linearly homogeneous. Now since 

/ '  is homogeneous of degree one, y  =  x/30+ 2 / ' ( l ) + £ ,  and the  lower bound for the  variance 

of a  regular estim ator of /30 can be shown to  be 8.4. However, if hom ogeneity is not imposed 

upon /*  it is easy to  see th a t /3Q still rem ains identified, but the lower bound increases to 

12. Therefore, the asym ptotic relative efficiency of the estim ator under hom ogeneity w .r.t. 

the estim ato r when homogeneity is not im posed is ^  =  1.428. Thus the  loss in efficiency 

by no t imposing homogeneity, when /*  is tru ly  homogeneous, is 42.8%. □

To show that the  bounds obtained in the beginning of this section are  meaningful, 

we now construct an estim ator of /30 th a t achieves these bounds. As discussed in 

Section 3.3, we need rjp (the estim ato r of a  least favorable curve) to  efficiently esti­

m ate  /30. Once we have rjp, we can estim ate  /30 by maximizing the em pirical profile 

likelihood. So let f)p be a consistent estim ato r of a least favorable curve rjp. If
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1
$ n = a rgm ax  [y{ -  x,-/3 -  fjpfa)]2 +  constant

p 1 «=i 
n

=  a rg n u n  [y{ -  x,-/3 -  r jp fa )]2 ,
i=i

then as discussed before, $ n is an efficient estim ator of (30. We now define a  least 

favorable curve, and also propose an intuitive estim ator o f the  least favorable curve.

A s s u m p t i o n  3.6.1. Let K(-) be a positive, real valued function  on R  such that,

(i) K(-) vanishes outside [ -1 ,1 ] ,

(») supf€(_ ltlJ |K '(a )| <  oo, and supIg(_ lil} |K "(s)| <  oo,

(iii) K (s )d s  = 1,

(iv) f ^ s K ( s ) d s  = 0,

(v) f ' l s2K (s) ds < oo. □

A s s u m p t i o n  3 . 6 . 2 .  L e ta n be a sequence o f  positive numbers ( the “window width”) such 

that an —*■ 0 and na„ -+ o o . □

P r o p o s i t i o n  3 . 6 . 1 .  With K(-) and an as defined, for  any ( u ,v )  6  Z\  x  Z 2 let

urE [yjZzA^1- = E] JL  v 'E lx i jZ oA ^-  =  -1
,  \  L V J  1Z 2 j  v  J n  I  l J  £ ]  I z 7 .  v l

M u ' v) “  « W I £  =  J] '  S  E K ; i n ‘ =  ?l

< * ( « ,» ) -  4 r K ( i [ f  _  ^ ) )  e »= i 2| j K(-L [? - ^ ] )

Then qp is a least favorable curve, and qp is a consistent estimator o f  qp.

P r o o f . See Appendix E. □

The estimation problem yielding efficient estimates of /30 is then
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zI -K(— -  ^ 1 )2j Zi, 1/
K( r : t S ;  -  £ ] )

h  E ? = . 4 r K ( i i s r - s t ] )  . '

Thus to  m ake sure th a t th e  consistency and asym pto tic  norm ality results in Sec­

tion 3.5 still hold, we have only to  verify Assumption 3.5.3. This is done using the 

following result.

T h e o re m  3.6.2. Let the random variable Z i/z2 have support T  and p.d.f. p(t). Also,

let

(i') xl>(t) = W.[yzr2\ ^  = t]p{t),

(ii') n(t)  =  E [ z |r | ^  =  t]p{t),

(iii/ ) Pi(t) =  E [xiZr2\ ^  =  t}p(t), fo r  i =  1 , . . .  ,p, and

let T)p be a least favorable curve consistently estimated by fjp given above. Furthermore, 

let jpT](3 0 denote the least favorable direction and assume that

(i) E |y |? <  oo, for  some q > 2,

(ii) suPigT E [j/2|f] <  oo,

(iii) supfgTp (t) <  oo,

(iv) 0 < infu6Zl |u | < supugZi |u | <  oo,

(v) 0 < infug*a |v| < supveZt |v | <  oo,

(vi) 0 < supfgX \ipU)(t)\ <  oo, fo r  j  =  0, 1, 2,3,

(vii) 0 < sup (gX |p |;) (OI <  oo. f or j  =  0. 1. and i =  1, • • • ,p ,

(viii) in ftgX |p ( t) | > 0, 0 <  su p (gX |p '(t)l <  00 •

Then fo r  A >  0, a sufficient condition to obtain

( 1) sup0gB supu ugz 1770(11, v) -  770(11, w)| =  op(n~A), and

fin =  argm in Y  
*  0p 7Z[

a 4 .' 22j=i Vi 
y« iPk 2r

fc= l ^ 7 = 1  i
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(2) snpp€B supu v € Z \-^ f ip (u ,v )  -  -^rip(u ,v)\  = °p(n  x ), 

is to choose the window width an =  n~a , such that a  >  0 satisfies

A ,  , .  ( l - 2 A ) ( , - l )  
2 -    '

Moreover, i f  £ £  {u, u}, then to obtain

( ! ' )  SUP/3€B SUPu,»6Z V )  ~  d ^ rl p { U i u )l =  ° p ( n ~ X ) i  a n d

(2 ') SUP/36B supu „6Z v ) -  u)| =  op( n - x),

it is again sufficient to choose an =  n~a , with a  >  0 satisfying

A  (1 — 2X)(q — 1)
—  Qj <  ----------------------.
2 -  3 ? - 2

P r o o f . See Appendix F □

3.7. The Case o f Concavity-

Let us now look a t the case when the unknown function /"  is concave. We want 

to  exam ine the relationship betw een the efficiency bounds for /30 and the  degree of 

concavity of T hat is, we w ant to  find the efficiency bounds for estim ating  /30 

when,

(i) / "  is strictly  concave, or

(ii) / "  is affine, or

(iii) when / ’ is concave but n o t strictly  concave.

We begin w ith a simpler problem  to  obtain  a geom etrical insight into the  original 

problem . So as an illustration, we look a t the  space of C2 concave functions on Z, a 

com pact subset of R . Later on we will ob tain  results for the case when Z C R 2, as in 

the  case of homogeneity. N ote th a t  J- is used to  denote the set of concave functions 

on Z , even when Z is a subset of the real line. However, this should not cause any 

confusion. As usual, before proceeding we define some useful term s.
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D e f i n i t i o n  3.7.1 ( H a l f - S p a c e ) .  If V  is a  Banach space and /  € V ' , f ^  0, then  

V}+ =  {u 6 V  : / ( v )  >  0} is called the (positive) half-space defined by / .  & V f  =  {u €  V : 

/ ( u )  =  0} is called the boundary  of the half-space.

D e f i n i t i o n  3.7.2 ( M a n i f o l d  w i t h  b o u n d a r y ) .  Let H  be a  half-space in a Banach 

space V .  Then a  sm ooth m anifold with boundary (modeled on V) is a  Hausdorff space 

M , such that open sets in M  are diffeomorphic to  open sets in H .

R e m a r k  3.7.1. For each u  €  Z ,  let H u =  { /  €  C2( Z ) :  f " ( u ) < 0}. Then H u is a  closed 

half-space of C2(Z )  defined by / " ,  and d f f u =  { /  6  C2(Z )  : f " ( u ) =  0}. Note th a t  in 

general the differentiation o p era to r is unbounded, but the use of th e  C2 norm  here, m akes 

it into a  bounded operator. Also note th a t  open sets in JTU a re  of tw o types:

(i) those th a t contain points of d H u (i.e., all /  €  C2(Z)  such th a t ,  f " ( u )  =  0),

(ii) and those th a t do no t. □

Now back to  the geom etry. We begin by noticing that !F is a convex cone imbedded 

in C2(Z). Since C2(Z )  is a  Banach space, it is a smooth m anifold. Now if we could 

somehow show th a t T  was also a  sm ooth manifold modeled on C2( Z ) ,  then any point 

in F ,  and /*  in particu lar, would have neighborhoods diffeomorphic to  open sets in 

C2(Z ) .  This would imply th a t  the  tangent space a t each point of T  would be C 2( Z )  

itself. Therefore, projecting onto l i n T { ! F , j ' )  would be equivalent to  projecting onto  

C2(Z ) .  Hence irrespective o f the  degree of concavity of / ’ , the pro jection  would ju s t 

be a C2(Z) function. In geom etrical term s, we would be able to  approach / '  from 

any direction and no gains in efficiency would occur.

Unfortunately, T  is not a  sm ooth manifold modeled on C 2(Z ) .  Heuristically, th is 

may be seen as follows. W ith  H u as defined in Remark 3.7.1, T  — n u6z ff„ , and since 

the boundary of each H u m ay be represented as a  line in R 2, T  has the structure  o f 

a wedge. The cutting  edge of this wedge (the  “kink”) is the  collection of all linear
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and constan t functions, including the zero function, while each face of this wedge is 

occupied by functions whose second derivative vanishes a t th a t point. This wedge 

struc tu re  agrees w ith our intuition, since we know th a t  T  is a  cone. Because of th is 

s truc tu re , th e  location of /*  inside T  (i.e. the  degree o f concavity of /* )  affects th e  

direction from  which we can approach it.

Since T  is not a sm ooth manifold, the tangent space varies from point to  po in t. 

Therefore, we first have to  find the  tangent cone to  T  a t /* . It is not

unreasonable to  expect th a t since T  is a  proper cone, will also be a p roper

cone. But keep in mind that we have to  project onto l i n T { T , /* ) , and not on to  

T ^ ,  /* ) . Once we obtain T ( F , f ’ ), we will show th a t l i n T ^ , /* ) is ju s t H. Hence 

projecting onto  l i n T { ! F , f ' )  is equivalent to  projecting onto H , and as far as the  

finite dim ensional param eters are concerned there is no gain in efficiency from the  

concavity of /* .

Now back to  the original problem where we make this argum ent rigorous. So let 

T  be the  set o f concave functions in H,  and / '  6 T . T hen to  ob tain  the sem ipara- 

m etric inform ation for the finite dimensional param eters, we have to  project on to  

l i n T i f , / • ) .  Let us first determine the n a tu re  of this space. To do so, consider the  

set of functions defined below.

Let Zo be a  non em pty subset of Z, and let, 2

W  =  { /  G H  : det[V2/ (u ) ]  =  0, o rV 2/ ( u ) i s  n.d. for all u  € Z 0 C Z.}

R e m a r k  3.7.2. (i) The reason for defining VV will soon be apparen t.

(ii) Since th e  Hessian of /  6 W is negative semi-definite on Z 0, we can characterize VV 

as the set of functions in H  which are concave on Z0 C Z. This implies th a t T  C  VV. 

Notice th a t  a  function could be strictly  convex and still be in W  if the determ inant

2The abbreviation “n.d.” stands for “negative definite.”
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of its Hessian vanishes on Z0. For instance, in R 2 the function (x ,y )  ^  i 4 +  y4 

is strictly  convex, bu t its Hessian is zero a t (0 ,0 ). Hence if Z0 =  { (0 ,0 )} , then 

(x , y) t—► x4 +  y4 is an  element of W .

(iii) W  is a  closed convex cone and not a  linear space, since ail strictly  concave functions 

are in W  while some stric tly  convex functions are not. □

We now have the following results.

T h e o r e m  3 .7 .1 .  Let T  be the set o f  concave functions in H , and let f m €  T ■ Then with 

VV as defined above,

f i  i f  /*  is strictly concave on Z ,
T  i f  f "  is affine on Z,
W  i f  /*  is concave (but not strictly concave) on Z.

P r o o f . See Appendix G. □

R e m a r k  3.7.3. (i) Notice th a t the  tangent cone T ( i F , f m) is not unique, but de­

pends upon the degree of concavity of 

(ii) If /*  is concave, but no t strictly  concave on Z, there exists a nonem pty set Z0 C Z, 

on which det[V 2/*] vanishes, 3 while on Z —Z0 the Hessian m atrix  V 2/ ’ is negative 

definite. This gives the  rationale for defining VV. □

T h e o r e m  3 .7 .2 .  U n T ( i F , f m) = H.

P r o o f . See Appendix G. □

As before, for i =  1 , . . .  , p the score function for /?,• is

S P. =

s[x,- +  5(z1,2 2)]> £ € H  if /* is strictly  concave,
s[x,- +  6(zi,  z2)\, <5 6 T  if /* is affine,
e [ x i  +  8 { z i , z 2 ) \ , <5 €  W  if /* is concave, bu t not strictly  concave.

3Otherwise, by Theorem H .l at'[V2/*]ck <  0 for all at €  IR2, and /*  is strictly concave.
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T he most difficult one-dimensional sub-problem , i.e. the one w ith the least informa­

tion, is then ob tained  by searching for 6 £ l i n T ( T , /* ) such th a t  the  Fisher informa­

tion is minimized. Following Theorem 3.7.2, th e  sem iparam etric inform ation for /?,-0 

is therefore,

V -  =  $  E [*i +  tf(*i,*a)P-

This implies th a t  th e  function <5* solving the above optim ization problem  is

6- =  proj[x,|7f],

and from the following theorem , a projection on H  is easily obtained.

T h e o r e m  3.7.3. Let 6- be the projection o f  x, on 7i. Then,

6 i(u ,v )  =  —E ( x , j z i  =  u, z2 =  v).

P r o o f . By im posing sufficient differentiability on the density  functions, E ( x , j z [  =  

u, z 2 = v) £ H. Hence, all th a t  remains is to verify the orthogonality  condition of the 

classical projection theorem . But this is straightforw ard. □

From the above theorem , the efficient score S  for com puting the sem iparam etric 

efficiency bounds of (30 is

/X i  -  E ( x 1|x1, x2)>

S  = e :

\ x p — E (xp |zl5 z2) /

The m atrix ( E S S ' ) ~ l then gives the required sem iparam etric efficiency bounds for 

(30, when the true  function /*  is concave.

Furtherm ore, let K : [ -1 ,1 ]  x [-1 ,1 ]  -> R  be a kernel satisfying the m ultivariate 

version of A ssum ption 3.6.1. Then it is easy to  see that
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p
770(11, u) =  E ( y j \ Z i j  =  u ,  Z 2j  = v ) ~  Y ^ f i k ® { X k j \ Z l i  =  u ,  z 2j  =  V )

E U i V :  ~  Z U i  A ) K ( = = ^ ,  ==?*)

where r)p is a  least favorable curve, and ijp is a consistent estim ato r of Tjp. As in

Section 3.6, it m ay also be verified th a t  fjp and jpfjp satisfy ail assum ptions regarding

rates of convergence etc. th a t an estim ato r of a least favorable curve has to satisfy.

Recent trends clearly indicate th e  growing popularity of sem iparam etric  techniques 

in econom etrics. As econometricians incorporate restrictions of economic theory in 

these techniques, they will gain even wider acceptance am ong applied economists. 

This d issertation  is a  step in this direction, viz., the in tegration  of economic theory 

with econom etric practice. Hopefully, it will be a stepping stone to  the  general theory 

of efficient sem iparam etric estim ation under shape restrictions. Such a  theory will 

be obtained when the  class of shape restriction is extended to include all popular 

restrictions im posed by economic theory  on unknown functions. However, in this 

chapter we have concentrated upon the  two basic shape restrictions of homogeneity 

and concavity.

Under certain  regularity conditions, we find tha t the efficiency bound for any reg­

ular estim ato r of (30 is determ ined only by l i n T { f F , f ‘ ), the  sm allest closed linear 

space containing the  tangent cone T ( ! F , f ’ ). In fact, we show th a t efficiency bounds

The estim ation  problem yielding efficient estim ates of /30 when /*  is concave, is

then

fin =  argm in V  y{ -  V  x kj/3k -
*  0* ;=i . tZl

n P E ;n=i(yj -  C iU  X k j f a M

3.8. Conclusion
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determ ined by T { T ,  /* ) canno t be attained by any regular n 1/<2 - consistent estim ator 

of /30. Hence if two different shape restrictions on T  produce the  same l i n T ( J r , / ' ) ,  

then  th e  efficiency bound for any regular estim ator of /30 will be the sam e in both 

the  cases.

In Section 3.6 we com puted th e  efficiency bound for /30, when the unknown func­

tion /*  was a  homogeneous function of degree r. In order to  do so, we had  to  obtain 

orthogonal projections on the  space of homogeneous functions to  find th e  least fa­

vorable direction. The com puta tion  of the efficiency bound also helped us construct 

an efficient estim ator for (3Q. This estim ator was obtained by m aximizing the  profile 

(or the  concentrated) likelihood, and is based on an approach of Severini and Wong 

(1992). The idea is extrem ely intuitive and is m otivated by the fact th a t  in para­

m etric models maximum likelihood is efficient, leading to  the possibility of it being 

efficient in sem iparam etric m odels. The construction of this estim ator required a two 

step procedure. In the first step , the  unknown function /*  was estim ated  while the 

finite dimensional param eter /30 was kept fixed. In the second step, this estim ate  of 

/ ’ was used to concentrate the  likelihood, which was then maximized over the  finite 

dimensional param eter to  produce an estim ate of /30. However, ju st any nonparam et- 

ric estim ate  of / “ cannot be used to concentrate the  likelihood in the second step. 

This is so, because approxim ation by an arb itrary  estim ator of / ’ may introduce a 

bias in the  asym ptotic d istribu tion  for the estim ator of /30. But this bias disappears 

if we estim ate  f "  by a least favorable curve.

We showed th a t when / “ was a  homogeneous function of degree r , the least favor­

able curve was also another homogeneous function of the same degree. Once this least 

favorable curve was used to  estim ate  / ’ , we dem onstrated  th a t m aximizing the con­

cen trated  likelihood led to  an efficient estim ator of /30. More im portantly , since the
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least favorable direction in this case also tu rned  out to  be a  homogeneous function, 

there are gains from  homogeneity for estim ating  the finite dimensional param eters. 

Furtherm ore, as a  by product of th is research we have developed kernel estim ators of 

homogeneous functions. Such an es tim a to r is used in C hap ter 4 to  develop a  te s t  for 

hom ogeneity o f functional form.

In Section 3.7 we computed th e  efficiency bounds for /30 when /*  is a  concave 

function, and  also proposed an es tim a to r th a t achieved these bounds. This problem  

is different from  th e  previous one because unlike the space o f homogeneous functions, 

the space of concave functions is no t a  linear-space. It is in fact a closed cone with 

strictly  concave functions in its in terior, and weakly concave functions on its boundary. 

This characterization  is im portan t, because it implies th a t  the location of /*  inside 

this cone, i.e. w hether /*  is strictly  or weakly concave, will influence the efficiency 

bound for (30. Moreover, this cone stru c tu re  also creates some technical problem s. 

For instance, the  notion of the derivative as a  best linear approxim ation makes sense 

only for linear-spaces or, in general for sm ooth manifolds (spaces which resemble 

linear spaces a t any given point). U nfortunately, a  cone is neither a linear space nor 

a  sm ooth m anifold. But since th e  space on which the projections are obtained  is

l i n T ( J 7, / ' ) ,  these problems can be overcome without too  much difficulty.

We find th a t  when / ’ is concave, the  least favorable direction, obtained by pro­

jecting the scores of the param eter of in terest onto l i n T ^ F , /* ) , is ju st a twice con­

tinuously differentiable function. Hence if we restrict a tten tio n  to the class of n 1/2- 

consistent regular estim ators, com puting efficiency bounds for /30 when /*  is concave 

is equivalent to  com puting efficiency bounds for /30 when /*  is just a C2 - function. 

T ha t is, we cannot do any b e tte r in estim ating the finite dimensional param eters 

when we know th a t  /*  is concave. However, if the least favorable direction is ob-
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tained by projecting the  param etric  scores onto T{!F, / ' ) ,  th en  there  is a possibility 

of gains from concavity, b u t a t the  expense of losing regularity.
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CHAPTER 4

ESTIMATION A N D  TESTING OF HOMOGENEOUS FUNCTIO NS

4 .1 . I n t r o d u c t io n

Consider the regression model y = / ( x ) + £ .  In this chapter we ob tain  a  tes t for the 

hypothesis th a t /  is hom ogeneous of degree r ,  where r  is assumed to  be known to the 

econom ist. Using the approach  developed in C hap ter 3, we show how to  construct the 

least squares estim ator of /  under homogeneity. Furtherm ore, we present the  results 

o f a small simulation experim ent which was conducted to  study th e  finite sample 

behavior of our test s ta tis tic .

Let us begin by analyzing the canonical regression

V i  =  / ( x «) +  z =  1 , . . .  ,71.

T he d a ta  {Pi,x,}"=1 are assum ed to  be realizations of i.i.d. random  variables (Y, X ) 

which take values in R  x  R p, where p > 2. Furtherm ore,

(i) The observations x , come from a  d istribu tion  with compact suppo rt S x  C Rp. 

W.l.o.g. let S x  =  [0, l]p.

(ii) The distribution o f x  has a  Lebesgue density p(-), which is tw ice continuously 

differentiable.

50
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(iii) The e rro r term s e are assum ed to  have full support w ith  E e  =  0, and variance

of (t) =  V ar(e |X  =  t) < oo.

M oreover, e is independent of x .

(iv) For som e a  >  0, E ( |Y |2+Q|X  =  t) is a  continuous function.

(v) The functional form of /  is no t known to the econom ist.

Thus far, the  assum ptions have been purely sta tistica l in nature. Now suppose 

th a t the  d a ta  are generated from an  economic model th a t  imposes some additional 

qualita tive  restrictions on the d a ta  generating process. We focus in particu lar on 

shape restrictions, and assume th a t the  function /  is a  C 2-homogeneous function of 

degree r  >  0.

A s s u m p t i o n  4.1.1. The degree o f  homogeneity r, is known to the economist.

As such models occur ra ther frequently in microeconomics, it is im portan t to  know 

if the  shape restriction of hom ogeneity is a  valid restriction. This is crucial, since 

m ost shape restrictions (including hom ogeneity) usually arise as a result of som e op­

tim ization problem  th a t economic agents are assumed to solve. Hence, if we reject the  

hypothesis th a t  /  is homogeneous, we also reject the hypothesis that agents are as­

sum ed to  be solving an optim ization problem th a t implied homogeneity of functional 

form. M oreover, since homogeneity is a  particularly trac tab le  shape restriction, say 

as com pared to  concavity or m onotonicity, focusing on hom ogeneity may often lead to 

a  sim plification of econometric analysis. For instance, suppose th a t /  is the cost func­

tion for a  com petitive firm producing a single output w ith  p  — 1 inputs. This implies 

th a t /  is linearly homogeneous, increasing and concave in factor prices. Therefore, 

rejection o f homogeneity alone is sufficient to  reject the hypothesis th a t the  firm is 

m inim izing costs.
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In subsequent sections, we show how easy it is to estim ate homogeneous functions. 

We construct an estim ator for / ,  when /  is homogeneous o f degree r ,  and show that 

this estim ator is optim al in the  sense of being arbitrarily close to  the  least squares 

estim ator. Moreover, we also develop a  fully nonparam etric tes t for the  hypothesis 

th a t  /  is indeed homogeneous. Furtherm ore, we report the  results o f a  simulation 

experim ent which was perform ed to  study  the small sample properties of this test. 

T he following notation  is used throughout this chapter.

N o t a t i o n  4 .1 .1 .  (i) We denote vectors in boldface. Thus, x  =  ( x 1? x 2, ■ . ■ , x p)

and Xj  =  ( x 1j , x 2j , - ■ • , x p,;) denote the  values taken by random  variables X  =  

( X U X 2, . . . , X P) and X j  =  ( X l J , X 2J, X pJ).

(ii) T  is the set of all C2 functions on 5 X, which are also hom ogeneous of degree r. □  

Using this notation, the null and alternative hypotheses are:

Ho : /  =  / “ for some /*  6 T ’,

Hi : /  #  /*  for all /*  G T .

4.2. Optimal Estim ation o f Homogeneous Functions

We s ta rt our analysis by approxim ating the  least squares estim ator of /  under H0. 

To do so, we determ ine the function t*  G T  th a t minimizes the L2 distance between 

y  and T .  The least squares estim ator of /  under the null, is then a rb itrarily  close to 

any consistent estim ator of 7r*. This technique of estim ating hom ogeneous functions 

is an extension of the approach taken in C hap ter 3, and leads to  ou r first result.

T h e o r e m  4.2.1. Let r"  =  argm in/€;F E [ y -  / ( x ) ] 2. Then,

«/ \ /i(Xi, X2, • • • , Xp)
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,< (*„*„... ,*„) = *; e  ( y x ; f e  = i i ,  f i  = f i , . . . ,  ^  = x- f ± )
P P P P P P

o f  \  ic> /  v 2 r t  X 1 -^ 2  ^ 2  X p _ i  V l \5(Xi,X2, • ,®p) — E(Xp | — i x  ~  x X I
■̂V n A o  * o  P p

P r o o f . By imposing sufficient differentiability on the density  functions, we can show 

th a t j t ' ( x i , . . .  , xp) 6  C2(Sx). But this implies th a t 7r* 6 T ,  since it is already homoge­

neous of degree r  by construction. Then using the classical projection theorem , all th a t 

remains is the verification of the orthogonality  condition. To see th a t this holds, let g be 

any element of T . T hen, it is easy to  see th a t

X ' E C Y X Z l O - ,  4 K . .  • , X ,  X-> X  ,t t V Y V ( ' Y ’1   P * P 1 X ,  Xp_________ X f  Y r  n (  p ~ l  n
7T(X)f i r (X)-  w ( X 2 r ,x± ^  x p_M X p ^ x ’ X ’ “ ' ’ X  ^

I x t >  * . > • • • , - ± r )  a p a p rp

Now, by using ite rated  expectations it can be verified th a t E [x"(X )ff(X )] =  E[y<7(X )]. 

Therefore, E [y — 7r*(X)]y(X) =  0, and  the orthogonality condition holds. □

Notice th a t  under H0, i.e. when y  =  /* (x )  -|-£,

A ( x i , . . .  , x p) =  x ; E ( x ; / ' ( x )  +  , ^ - L =  “ )
A p  X p  p p

=  ^  I #  =  i i , . . . ,  =  i ^ i
X p  X p  p P P P

= / ’ ( x )B (x i , . . .  , Xp),

using the fact th a t e is also independent of ( I 1 , ! 1 , , . .  , *yp1)- T hus, we have 

obtained the following result.

L e m m a  4.2.1. Under H0, x* =  /" •
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Having determ ined x ',  it is now quite  easy to  construct a  consistent estim ato r for 

it. Since x* is a  ratio  of conditional expectations, sim ply replace each conditional 

expectation by its nonparam etric analog viz. the kernel e s tim a to r. We then  have the 

following result.

A* j
L e m m a  4 . 2 . 2 .  Let, x * ( x l5 . . . ,  x p) =  —  p where,

B ’ {x u . . .  , x p)

, Xp) = £ n ^ J K (X l/z '
UCLn j =  l a n a n

n . / _  _  \  1 V '  _ 2 r  r s r X l / X P ~  x l j / x p J  x p - l  /  x p ~  x p - l J  /  x p, j  \
B (* ., .  • . ,  * ,) -  L  pj (    . ■ • • . £  )•

Then, x re( x i , . . .  , xp) ► x ( i i , . . .  , 2rp).

R e m a r k  4.2.1. (i) Note th a t  even though x  € R p, the  argum ent of the kernel K(-)

is an elem ent of Rp_1. T h a t is, a  homogeneous function on R p is estim ated  after 

reducing its dimension by one. This step has a profound consequence. As may 

be seen from the proof o f Lem ma 4.3.2, it is this reduction  in the  dimension of 

the nonparam etric  estim ator th a t makes the d istribu tion  of our test s ta tis tic  Op( l)  

under H0. For assum ptions on the kernel functions used in estim ation , see the next 

section.

(ii) Since under the  null hypothesis x* =  /* , we can consistently  estim ate  /*  by x “. 

Henceforth, we denote a  consistent estim ator of / '  by /* ,  where /*  =  x*.

(iii) Furtherm ore, we can modify the  proof in Appendix F  to  show th a t  w ith an =

0 ( { J s p } * ) ,

su p  |/„’ ( t )  - / ‘ ( t ) l  =  op 
t e s x V  ̂ n >

Note th a t  since ( p p ) 3** is the  optim al rate  of of convergence under H0, is 

asym ptotically  optim al according to Stone (1982). □

) as  n  —*■ oo.
t esx
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4.3. Constructing the Test Statistic

In this section we construct a  sample sta tistic  for testing  H0. This s ta tis tic  is based 

on an extension of the  approach used in Severini and  Staniswalis (1991). In their 

paper, Severini and Staniswalis developed a  s ta tis tic  for a  param etric null hypothesis. 

However, in our case the  null hypothesis is fully nonparam etric . To help understand  

how our te s t works, we analyze in detail the behavior o f the  sta tistic  a t a  fixed point. 

But let us first describe some notation which will be used subsequently.

N o t a t i o n  4.3.1. Let / „ ( t) denote the kernel estim ato r of /  a t a  fixed point t. T h a t is,

w h e r e ’

*<») = £  J K( ^ ) -  D

A s s u m p t i o n  4.3.1 ( K e r n e l ).  The kernel function  used above belongs to the class of  

product kernels. That is, fo r  t  =  ( t t , . . .  , tp), let K (t) =  n f= l fc(f, ) be a real valued function  

on R p. Here, each k(-) is real valued and satisfies:

(i) k(t)  =  k ( —t) > 0,

(ii) k(-) vanishes outside the interval [— 1,1],

(iii) f \  k (s )  ds = 1,

(iv) s k ( s ) ds = 0,

(v) s 2k(s )  ds < oo. □

R e m a r k  4.3.1. Rem ember th a t  when we estim ate /* , the  kernel K(-) is defined on R p_1 

and not on R p. This is because, as explained in Rem ark 4.2.1, we estim ate homogeneous 

functions after  reducing dimensionality by one. □
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A s s u m p t i o n  4.3.2 ( W i n d o w  W i d t h ).  Let bn be a sequence o f  positive numbers (the 

“window width”) such that bn —*• 0 and nb^ —► oo. □

R e m a r k  4.3.2. Similarly, when estim ating  /*  the window w id th  an satisfies an — 0, 

and  na£_l —► oo. □

N o t a t i o n  4.3.2. Let E/  (•) denote th e  expectation of (•) when th e  unknown function 

in (•) is / .  Since /  is not known to the  econom etrician, so is Ej . W e therefore use to 

denote  the  estim ator of Ej  . This is ob tained  by replacing /  with f n in the  expression for

We are now ready to  construct our te s t statistic . First notice th a t  in our case, the

are  only interested in the  functional form  of /  allows us to  base o u r tes t sta tistic  on 

th e  num erator of its nonparam etric estim ato r, /„ . This is very helpful since now we

E ,( - ) .  □

density of the observations x ;- does n o t change. This coupled w ith  the  fact th a t we

do not have to deal w ith ratios of random  variables. So let { t1?. . .  , t m} be m fixed 

points in 5 x , and define the test s ta tis tic  Amt„ as follows.

. V  W ) f n2( t;)

■" h
(4.3.1)

m
=  5 ] ^ - )

where,

T „(t) =  gn{t )  -  E ;. j„ ( t ) ,'  n

and <r2( t)  is a  consistent estim ator of
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R e m a r k  4.3.3. T he no tation  Am,„ indicates the  dependence of the  test sta tistic  on the 

m  points a t which it is evaluated, and  the  sample size n. This is im portan t, since m  m ay 

be allowed to  depend upon n. T he case of m  growing with n  is trea ted  in Section 4.6. 

However, unless m entioned otherw ise m  is assumed to be some fixed positive integer th a t  

does not depend upon n. □

To obtain the asym ptotic  d istribution of Am,„, let us first analyze the asym ptotic  

behavior of Tn a t a  single fixed point t  6  S x -  We begin by w riting

=  ( n [ j n ( ‘ ) -  E/ s M l  -  B n( t ) , (4.3.2)

where,

B n( t )  =  (n&S)1/ 2 [Ey. <7n(t) -  Ej P„ ( t ) ]  

represents a  bias term . We now have the following result.

L e m m a  4.3.1. L e t a 2{tj)  =  E ( y 2|t_,)p(ty) ^  K2(u )d u , f o r  j  = 1 , . . .  , m .  Then,

/  (nbPn) 112 [5n( t t ) -  Kf  ^ „ (tj)]  \

P r o o f . See Appendix I. □

/ 'O'
i  N :

1

\ .0.

■a2(U )  . . .  0

0 . . .  c 2( t m)

Furtherm ore, let 6 be any function in C2(5 x ). Then the  next lemma is used to  

determine the asym ptotic  behavior of £?„(t ) ,  bo th  under the  null hypothesis H0, and 

under a sequence of local alternatives given by

*(t )
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L e m m a  4 . 3 .2 .  Using the notation given above,

w t j = { «R m - J  -"C1) Under H°’ (A Q <n
n( ’ '  -p ( t ) t f ( t )  +  o ( l )  under YLln. C ' ' ’

P r o o f . See Appendix J . □

Using these two lem m as we immediately obtain  th e  following result.

T h e o r e m  4 . 3 .1 .  With T „ ( t )  as defined in (4 .3 . 2 ) ,

J n t f f  f t l  - i  / N(0 ’ a2(t )) +  °p (1) under H0,
(N (p(t)6(t),<72( t) )  +  op( l )  under  Hln .

Now let <x(t) be a  consistent estim ator of <x(t). T hen  using Slutsky’s T heorem  and 

Theorem  4 .3 .1 ,  we have th a t

a(t) Vn6S Tn(t)
<j(t) <r(t) <r(t)

N (0 ,l)  +  op( l )  under H0,
N (p ( t ^ t )  i ) +  u n d e rH ln .

p2(t)<52(t)
But th is implies th a t  for a  non-centrality param eter u =  -  -  -y  - — ,

(nbP)TZ(t) d fx f  +  Op(l) under H0,
^ ( t )  1 a i('/ ) +  op( 1) under Hln.

p2(t)<52( t )
Hence, we have shown th a t if p.- =  ------- -  -J- , where j  =  1 , . . .  , m , then

2o-2( t  j)

I r t  x _  ( ^ ) t 2( tj )
-  . 2(t^

/ x i  + ° P(1) under H0,
IXiC";) +  op( l )  under H ln.

But from  Lemma 4.3.1 we have th a t Ami„ (t,)  and Ami„(ty) are also asym ptotically  

independent for i ^  j .  Therefore, we can finally o b ta in  the asym ptotic d istribu tion  

of the sam ple statistic  Am n which is given by the following theorem.
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THEOREM 4.3.2.  Let v  =  Y l’jLi vi> where uj =  ^  ^ Then

(n*£)ff(tj)
U  3 U  ^

f f X m  +  °p (l)  under  H0,
IXmC^J +  OpCl) under  H ln

4.4. Sim ulation and Com putational Procedures

To study  the finite sam ple properties of th e  proposed test, we perform ed a  small

sim ulation experiment. In order to simplify things, we restricted our a tten tio n  to 

p  =  2, i.e. covariates tak ing  values in R 2. T he chosen d a ta  generating process was

R e m a r k  4 .4 .1 .  T h e  f u n c t i o n  ( x i , x 2) |- i> x? +  x \ ,  w hi ch  is h o m o g e n e o u s  o f  de gre e  2,

arb itrary . □

The statistic  Am,„ was evaluated at m  =  25 points, obtained by constructing  

a  5 x 5 grid in R 2. T he (x, y)-coordinates of the grid came from th e  sequence 

{1.1 ,1 .3 ,1 .5 ,1 .7 ,1 .9} . Note th a t computing T „(t) =  5„ (t)  — Ef. 5n(t) in its present 

form is not feasible, since we do not know how to  select an optim al bandw idth  for gn. 

However, calculating T„(t )  becomes simplified if we notice that:

y =  / ( x i , x 2) +  £, where,

under H[n

under Ho

x l5x 2 =  UIID(1,2) 

e 4 N ( 0 , l ) .

as the  local p e rtu rbation  was alsowas chosen arbitrarily. Similarly, the choice of
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t n { t )  — U n i t )  — E f .  5 n ( t )
«* n

=  / n ( t ) p „ ( t )  -  E f .  g n ( t ) .

This is easy to  com pute, since we can now choose optim al bandw idths for /„  and 

p„ by cross validation.

R e m a r k  4 . 4 . 2 .  (i) T he estim ator o f the  density, denoted by pn(-), was computed

using the G aussian kernel. The use o f a Gaussian kernel simplifies th e  form of the 

cross-validation function, which is used to obtain  the optim al bandw idth  for the 

density estim ator.

(ii) The kernel used to  com pute the nonparam etric  estim ators f n and / ’ , was the 

Epanechnikov kernel

, ,  . f 0.75(1 -  u2) if —1 < u <  1 
k(u)  =  <

[0 otherwise,

chosen for its second order optim ality  properties. Note th a t for the  product 

Epanechnikov kernel,

[  K2( u ) d u  =  IK=I /  k 2(u j)du j
J - 1/[-l.l] '

= 0.6P.

(iii) The window w idth  used in /* , was also chosen by cross-validation. □  

To compute E,-. pn( t ) ,  notice that
J n
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E ,. j„ (t) =  E ,. { J L
7 1 j = l ""

=  i E r f e K ( ^ ) }

=  i - E { K ( l ^ . ) E ; . (ftlX i)}

=  ^ E ( K ( ^ ' (X' )>-
t  “  x  ■ *

Hence E,-. g„(t )  =  A- E {K (—-— - ) /„ ( x ,) } ,  and was sim ulated using the  algorithm
on

in Table (4.7.1). Furtherm ore, d 2( t)  was obtained by utilizing the fact th a t

<r2( t )  =  E (y 2|t )p ( t )  f  K2(u )d u
■'[-i.i]'

=  { / 2( t)  +  o-t2(t)} p (t)  /  K2(u ) du.
l.i]'

And therefore,

o-2( t)  =  { /n ( t)  +  ^e(*)}Pn(t) [  K2(u) du , where,

z.2fj.\ nOn 0n
° A t )   ---------------- m ----------------■

4 .5 . R e s u lts

The entire code for th is sim ulation was w ritten  in GAUSS, and the  results for 500 

repetitions are presented in Table (4 .7 .2). As may be seen from th is tab le , the  test 

over rejects under H0. However, it has excellent power characteristics. Some reasons 

th a t may help explain th is poor perform ance under the null are:

(i) Inaccurate choice o f m , the num ber of grid points a t which th e  test sta tistic  is 

evaluated.
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(ii) Poor location of the  grid points, which m ay destroy the independence o f th e  indi­

vidual term s in Ami„.

The first problem m ay be resolved by allowing m  to be a  function of n, as in Severini 

and  Staniswalis (1991). As far as the  second problem is concerned, one could pick the  

m  evaluation points and  the bandw idth  bn such th a t, mbPn < 2~p for all n. For m ore 

on this, see Section 4.6. O f course, there  is always a possibility th a t  the test s ta tis tic  

developed in this chap ter has poor finite sam ple performance. If this is indeed the 

case, then we need to  look a t m odifications o f this statistic which yield b e tte r  finite 

sample approxim ations to  its asym ptotic  distribution.

4 .6 . L e t t in g  m  G ro w  w ith  n l

In Remark J . l  it was pointed out th a t  local alternatives for which 5 (t,) =  0, where 

i = 1 , . . .  ,m , are not detectable. Such local alternatives can be m ade uninteresting 

by letting m  grow w ith the  sample size n. In this section we develop the asym pto tic  

theory  for Am,n , when m  depends upon n. But first, some additional notation.

Notation  4.6.1. (i) Let m„ denote a  sequence of increasing positive integers for

n =  1 ,2 , . . .  , oo.

(ii) For each n , let t n>1, t „ t2, . . .  , t„ ,mn denote a  lattice of fixed points in S x -  As n  —<■ oo, 

these points get dense in S x -

(iii) Let zn(t )  =  Furtherm ore, let znj  =  zn( t nj )  for j  = 1 , . . .  , m „.

Then z„j  is a  triangu lar array  of random  variables w ith m ean zero. □

The grid { t„ ti , . . .  , t n m„} in 5 X =  [0, l]p is created by choosing m \{p points in each

dimension. These points are chosen such th a t the  distance between adjacent points

in each dimension is m ~ ltp. It is then easy to  see that znj  is independent of znj +1,
rI am grateful to Professor Severini for giving me access to some of his unpublished notes. 

Section 4.6 is based upon these notes.
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if m nbP < 2~p. T h a t is, if m n -* oo a t a  slow enough ra te . Therefore, to  ensure row 

independence of the  triangular array  znj ,  we m ake the following assum ption. This 

assum ption will allow us to use a  CLT for triangu la r arrays, later on in th is section.

ASSUMPTION 4.6.1. Foreachn, m nb£ <  In  particular, this implies m n =  o(b~p). □

A part from  the  assum ptions m ade earlier, also assum e th e  following.

A s s u m p t i o n  4 . 6 .2 .  A s n - *  oo,

(i) m ^ i n b Z ) 1' 2 supt |E/. $n(t) -  E,. gn(t)\ 0,

(ii) m \ l 2 sup t |o-~2(t) — o—2(t)| i  0,

(iii) sup t |E*2(t) -  1| 0,

(iv) m \ l 2 sup t |E * 3 (t) | I*  0,

(v) m lJ 2 sup t |Ez^(t) - 3 |  A  0,

(vi) For some  £ > 4, supn supt E|z„(t)|f < oo .  □

A s s u m p t i o n  4.6.3. The sequence o f  local alternatives is given by,

H,„: / ( t)  = /-(t) +
m n y/nb\i

Here, £(•) £ C 2(5 x ) such that supt |<5(t)| > 0 .  □

To m ake explicit the  dependence of m upon n , the  test s ta tis tic  in (4.3.1) is hence­

forth denoted by Amni„. T hat is,

. _

where Tn is defined as before. The asym ptotic d istribu tion  of Amni„ under H0 and 

H2,, is then  given by Theorem 4.6.1 and Theorem  4.6.2, respectively.

T h e o r e m  4.6.1. Under H0,

Am„,n d
\/2m „

N (0 ,1) as n oo.
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P r o o f .  After some tedious algebra, Am„ifl =  A^j[ „ +  op( m vJ 2) where,

. ( 1) _  n ^n  H j= l [ f fn (^ n ,j )  ~  E / .  f fn ( tn , j ) ]2

Some m ore algebra yields

A ( l )  _  H ; = l [ g n ( t n , j )  ~  E / -  < 7 n ( t „ , j ) ] 2  ^ l / 2 x

A m „ , n -  + ^ m  >■

Therefore, Amnt„ -  m n = J2?=i(zn,j ~  !) +  °p(m n/2)> a n d i

A m „ . n  -  r n n  ~  1 )  . m

y /2 m n y/2mn p

Hence, it suffices to show th a t

i  N ( 0 , i ) .
\J2vnn \J2 m n

From Assum ption 4.6.1, 5„ is th e  sum  of a row independent triangular array . Now a CLT

S „ —E 5„ 
i /V a rS „for triangu lar arrays (D urre tt 1991) yields, ^ - ^ 4 -  —* N (0 ,1). After som e com putations

it m ay also be seen that

E  S „  =  o{m}J2)

Var 5V, =  2m„ +  o (m I/2).

Therefore, =  y f e  +  implies th a t

S n  _  5*n — E  5 n 

\J2 m n v/Var 5„

—* N (0 ,1) +  o (l)-

Hence, by utilizing Slutsky’s Theorem ,
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A m ,,n  m n _  S n .
y / 2 ^  v/2mT p ’

—* N (0 ,1).

□

THEOREM 4.6.2. Under the sequence o f  local alternatives  H2„,

-- -  A n - i  N (0 ,1), as n —>■ oo, where,
y/2 m n

A 1 ^2(*n.;)p2(*n,j)

P r o o f . Follows from the proof of Theorem 4.6.1 by noting th a t under H2n,

A =  a<1) +  - 1 -  V  + o (m !/2)— Jvmn,n T  l/2 ^  .. T  J-
mn j -1 t 1'n,;V

□

Therefore, as n  —► oo and { tnil, t ni2, . . .  , become dense in 5 x , any tes t based

on Ami> n has positive power under H2n.

4 .7 . T ab les fo r  C h a p te r  4  

T a b l e  ( 4 . 7 . 1 ) .  Algorithm for Sim ulating E j .  gn{t )

( i )  G enerate sample: ( x i , . . .  ,x„} .
t  x  ■ *

( i i )  For each Xy, compute: K(—-—-)/ii(xy).
t  — x

( i i i )  Take average: ^  E ”=1 K( . ) / n ( x ;  ) » 311(1 d iv id e  by
On _ _ _ _ _____________ ______

T a b l e  (4 .7 .2 ). Simulation Results (m  =  25, Repetitions =  500)

Sam ple Size 
(n )

4b Rejections (Ho) 
(.5% Level)

Size of 
Test

#  Rejections (H ln) 
(5% Level)

Power of 
Test

50 106 0.21 500 1.00
100 94 0.19 500 1.00
250 60 0.12 500 1.00
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APPENDIX A 

TANGENT CONES

In this appendix we collect some results about tangent cones. These results are

available in standard  m athem atical lite ra tu re  but seem to  be sca ttered  all over the

place. We begin with a  definition from K rabs (1979, Page 154).

D e f i n i t i o n  A .l ( T a n g e n t  V e c t o r  &  T a n g e n t  C o n e ). Let E  be a  normed vector 

space, A  a non-em pty subset of E ,  and x0 any point of A. A vector h  6  E  is called a 

tangent vector to A  a t  x0 if there is a sequence xn of elements of A  and a  sequence An of 

positive real num bers w ith limn__00 x„ =  x0 and  lim„_oo A„(x„ — x0) =  h. Furtherm ore, let 

T ( A , x o) be the set of all tangent vectors to  A  a t x0. Then T ( A , x 0) is called the tangent 

cone to  A  a t x0. □

R e m a r k  A .I. (i) Since T { A ,x 0) certainly contains the null vector of E ,  it is not 

empty.

(ii) In the above definition, x0 is necessarily a point of closure of A. Moreover, in 

general T ( A , x 0) is not a convex set.

(iii) Notice th a t if A  C B  and x0 6 A n  B ,  then T ( A , x 0) C T ( B , x 0).

(iv) We can also show th a t if x0 6 A  fl in t(B ), then T (A fl B , x 0) =  r ( A , x 0). □

We now look a t some properties of T ( A ,  x0).

66
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L e m m a  A .I . T (A ,x 0) is a cone.

P r o o f . Let h €  T (A , x 0).  Therefore, there exists a  sequence o f real num bers An >  0 

and a sequence of elements w ith  x n —► x 0 such th a t  h =  lim n_ 00 An(x„ — x0).

To show th a t  T ( A , x0) is a  cone we have to show th a t a h  £ T ( A ,  x0) for all a  > 0. Now, 

notice th a t,

a h  = a  lim A„(x„ — x 0)
n —’OO

=  lim aA„(x„ -  x0)
n — oo

=  lim (in{xn -  x Q),
n —* oo

where fin =  aA„. This shows th a t  there  exists a sequence of real numbers p n > 0, and 

a  sequence of elem ents xn £ A  w ith x„ —*• x0 such th a t a h  =  lim ^ o o  n n(xn — x 0). i.e. ah  

is also a  tangen t vector a t x0, which implies th a t a h  €  T (A ,io ) . Therefore, T ( A , x 0) is a 

cone. □

L e m m a  A . 2 .  T ( A , x 0) is closed.

P r o o f . See K rabs (1979, Page 154). □

The next lem m a gives a  sufficient condition under which T (A ,x 0) is a convex set.

L e m m a  A.3. Let A  be a non-empty convex subset o f  a vector space E. Then, T (A ,x 0) 

contains A  — x 0 and is convex.

P r o o f . We first show th a t T ( A ,  x 0) contains A  — x0 if A is convex. So let h  6  A.  Now 

define the sequence hn = x 0 + £(/i — x 0), i.e. hn = ^ h  +  (1 -  ^)zo- Clearly, hn €  A  since 

A  is convex. Also, h„ —► x0 and n (h n — x 0) —► h — x0. Therefore, h -  x 0 € T (A , x 0), and 

since h  was an  a rb itra ry  element of A, this implies th a t A — xq C T (A ,x 0).
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We now show th a t T ( A , x 0) is convex. Let h i , h 2 G T ( A , x 0). Then there  exist sequences 

G A  w ith  x* —*• x0,x 2 —► x0, and sequences of positive real num bers such

th a t  hi  =  lim n_ 0o / 4 ( I i  — x0) and h2 =  lim rl_ 00/z2(x2 — x0). Now, let 0 <  A <  1 and 

define h  =  A hi  +  (1 -  A )h2. Then, h  =  limn_ 0O S„(zn — x0), where,

=  A/i^ +  (1 -  A)//2, a n d ,

_ 1  , ( i - AK-X -r --------------i n 1 - x 2 .nA/xi +  ( l - A K  " A ^ + ( 1 - A K

Now Sn is a  sequence of positive real num bers, and zn 6 A  since A  is convex. So if we 

can show th a t zn —► x0 we would be done, since then  h  would be an elem ent of T'(A.xo). 

We show this as follows. Notice th a t,

K  -  io || =
V i

<  V i  +  ( i -  A ) / / 2
A

T ir lk i  — aroll +

A ^  +  ( l - A ) ^

( ! - A) |l/_2
A +  ( 1  _  A ) ^ f  • ( l - A J  +  Aj,.

And since both  the coefficients are bounded by 1, we have

r l l ( * 2 - * o ) | | .

k„ -  x 0 || <  | | x i  -  x 0 || +  | | x i  -  Xo|

0,

since ||x^ — x0|| —*■ 0, and ||x2 — x 0|| -* 0. Hence we are done. □

Using the  properties given above, we get the  following characterization of a  tangent 

cone.
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T h e o re m  A .I. Let A b e  a non-empty convex subset o f  a vector space E .  Then, T { A , x0) 

is the smallest closed cone containing A — x Q.

P r o o f .  By the  previous theorem s, T (A ,x 0) is a  closed cone containing A  — x 0. It 

only rem ains to  show th a t it is the  smallest closed cone containing A  — x 0. So let C (A  — 

x0) be any closed cone containing A  -  x 0, and suppose th a t  h G T (A ,x 0). Then h = 

lim n_co An(x„ — x0), where An is a  sequence of positive reals and x n is a  sequence of 

elem ents in A  approaching x 0.

So define hn = A„(xn — x 0). Clearly, x„ — x 0 G A  — x0. But since A  — x0 C C{A  — x0) 

we have th a t x„ — x0 6 C ( A  — x0). Now, the fact th a t C (-) is a  cone implies th a t 

hn = A„(x„ -  x0) 6 C ( A  — x0). i.e. hn is a convergent sequence in C ( A  — x 0). But since 

C { A  — x0) is closed, the lim it h  G C {A  — x0). This implies th a t  T ( A ,  x 0) C C ( A  — x 0). 

Note  th a t  T ( A , x o) is also convex since A is a  convex set. □

Using this theorem , we get the  following im portan t result abou t T (A ,x 0), when A

is itself a cone. This is a  result of Aubin and Frankowska (1990, Lemma 4.2.5, Page

143).

T h e o re m  A.2. Let A be a non-empty convex cone in a vector space E ,  and  x0 € A. 

Then, T ( A , x 0) =  A — R ++x 0.

P r o o f .  = >  Let h  6 T (A , x0). Therefore, there exists a  sequence of real numbers A„ > 0 

and a sequence of elements xn 6  A with xn —► x0, such th a t h  =  lim n_oo An(x„ — x0). But 

A„x„ 6 A since A is a  cone, and clearly Anx0 6 R ++x 0. This implies th a t Anx„ -  A„x0 € 

A — R ++x 0, which shows th a t  h = limn_oo A„(xn — x0) G A — R ++x 0.

< =  Let x be any a rb itra ry  element of A, and A >  0 any elem ent in R++. If we could 

show th a t  x -  Ax0 G T (A , x 0), we would be done since this would imply th a t A — R ++x0 C

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

70

T(A ,  x Q). Then tak ing  the closure on b o th  sides, and keeping in mind th a t T (A , x 0) is 

closed, we would have A  — R ++x0 C T { A , x 0). So we show th a t  x  — Ax0 € T (A ,x 0).

Since A 6 R ++, choose a  t >  0 such th a t  At <  1. Then since A is a  convex cone, we have 

that (1 — At ) x 0 +  t x  G A, i.e. x0 +  t (x  — Ax0) 6 A. This implies th a t  t (x  -  Ax0) € A  — x 0. 

But we know th a t  T (A , x0) contains A — x 0. Hence, we have th a t  t{x  — Ax0) (E T ( A , x 0). 
But since t >  0 an d  T ( A , x 0) is a cone, th is implies th a t x — Ax0 € T (A , x0). □

COROLLARY A . I .  Let A be a closed linear subspace o f  a vector space E,  and let x 0 €  A.  

Then T (A , x0) =  A.

P r o o f . Follows from the previous theorem . □
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A PPEN D IX  B 

P R O O F S  O F  R E S U L T S  I N  S E C T I O N  2 .7

R e m a r k  B . l .  The following proofs are from Severini (1 9 8 7 ) ,  w ith slight modifica­

tions. □

P r o o f .  [T h e o re m  2 . 7 . 1 ]  Clearly /3 t =  (/?io,/?2o> - • • ,Pio + t,0(i+i)o,. . .  , 0 P) is an ad­

missible curve in B . Then since T}p is a  least favorable surface, m ust be a  least favorable 

curve for estim ating @t. T ha t is, it m ust minimize E  [ j y £ ( /3 t,7?/3( ) | f=o ] ’ . Now,

dt
d „ a  _ x T T 'd £ ( P t , ‘n(3,)d0i(t) , d£((3t ,T]p ) ^  f  d _ \ d / 3 i ( t )

) =  E  — m — j j - + — g j —  E

_  d l {P t , 17/3,) di((3t : j]0i) (  d  \  . . .
-  m  ' +  ' a ,  U f t ’N '  im plylng’

1 = 0 dpi dr]

Therefore, minimizing E [^-£(/3t , J7jSt)|t=0]2 is equivalent to  minimizing

E dt{Pa,VpB) ( j d
drj \d0,dPi

=  E
dt(Pa,Vi30) +  d£{P0,T]po) 5

2

dPi dr)

where 6{ £ l i n T ( T , /* ) for i =  1 , . . .  ,p.  Hence the minimizer S' satisfies 

f d i { f . 30,77/3o ) d e ( P o , l 0 o) ( c . , \  d i { p 0,r)Po)
E I  a f t  +  ' a r " ( i >J a ,  ( 1 ~

for all 6 £  H n T ( J r ,/* ) , and i =  1, . . .  ,p . □

71
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P r o o f . [ T h e o re m  2.7.2] = >  So suppose th a t the result is tru e . Then since it holds

for all (61, . . .  ,8p) 6 l i n T { ! F , f ‘ ) x  . . .  x  l i n T ( F , f m), it also holds for . . .  ,0 ) €

l i n T { ! F , /* ) x . . .  x  l inT{!F,  f ' ) ,  because 0 is always an elem ent o f the  tangent cone. 

Therefore,

E ( M(t%,Tj0a) , dt(P0,Vfio) r d .  ^  MiPoiVPo),. w f t ,Vpo),  d  \  d£(0o,r]Po) _
+  an--(dKmJ) —ar~< l)'  ’V 3 0 ,

B ut this implies th a t Sx is the least favorable direction. The sam e holds for S2, . - .  ,8p, 

and we get th a t S'  =  ( ^ , . . .  ,SP) is the  least favorable direction. Therefore, rjp is a  least 

favorable curve since S ’ = jp ‘nP\P=Pa is the  least favorable direction.

< =  Now suppose th a t 77̂  is a  least favorable curve, and let the  least favorable direction 

be 6  =  (■^r)l3\l3 =po, . . .  , 1/3=/30)• T hen  from Theorem 2.7.1, 6  satisfies

W o > » 7 f t ) ,E W o ^ f t )  , MjPoiVfig) , c.s 
d(3i drj  1 i } ,

for all Si € l i n T ( T ,  /* ) , and i =  1, . . .  ,p . Summation over i th en  yields the required 

resu lt. □

P r o o f . [T h e o re m  2.7.3] ==>■ Let IPo be given by

„  / W o , A / 3„) , W o ,A f t , ) ,  d A , \  fde((3o,x 0o) , ded30, \ Po) ,  d % , y
E  [ — d p —  +  ~ T x — [ ~ W ~  +  — Tx— { m x^ )  •

Also assume th a t  a ' ( I Po — I)ot  <  0 for all ex € R p. We show th a t  Xp is a  least favorable 

surface. Now since the  given condition holds for all a  6 Rp, choose a  =  e7- the j th unit 

vector in Rp. T hen  e'j{IPo -  I ) ^ j  <  0 becomes,

E rWo,Aft) , Wo,Aft,), d , ;
~ W j  5A W Xpo).

2

<  E
r W o ,  Aft) , d e ( 0 Q,XPo) ,  d _ , 

~ d 0j  +  a x  ( d0j  ^  \

for j  =  1 , . . .  ,p . T h is1 implies th a t js the pro jection  of ^ (^ g|>) onto

^ ince  both Xp and r)P are admissible curves in UnT  through /* , the tangent vectors ^ j X Pa 

Wi^Po’and df-Pftj are both elements of l inT(!F, / ”).
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the space

d \

Therefore, ^ - X 0o is the  least favorable direction for j  =  1 , . . .  ,p , implying th a t  X0 is a 

least favorable curve.

■<= Now suppose th a t  p0 is a  least favorable surface in l i n T ,  and define

f  d£(/3o,p0a) \  ( dl{f3a,p0a) \ '
dl3

Then we show th a t a ' (  10  — I )ot  < 0 for all a  €  R p, where I  is the Fisher inform ation 

m atrix  corresponding to  ano ther p  dimensional param eterization of p.

So let (3t =  /30 +  tot. Clearly, (3t is an admissible curve in B  through /30, w ith tangent 

vector a .  T hen  since tj0 is a  least favorable surface, p0i m ust be a  least favorable curve
r 1 2

for /3t , i.e. p0t minimizes E \t=o ■ But by the  chain rule,

<**(£, »fa) _  \ d t {P 0,T)f3o) d l(/30, Tj0 o ) f  d  ^
dt

E
’d£((3,p0 i )

dt f=0.

t=o L df3 d p

= Spgct, which implies th a t,

= e  ( s k < * y  ( s k a )

=  « 'E 5 ^ 05 ' a

=  o t ' I p a ,

- rd/3, ‘

dt t=0.

and we get th a t  p0t minimizes ot'I0oot. Now if \ 0 is any o ther admissible curve in l i n T ,  

we have
’d i ( 0 t,X0i). I 2

E
dt I t=Q =  Ot lot ,

where I  is the  inform ation corresponding to  X0t . B ut since p0t was a least favorable curve, 

it minimized ot'I0aot, i.e. ct'I0oot < o t ' I a ,  for ail at €  R p- □
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A PPEN D IX  C 

P R O O F  O F  T H E O R E M  3 .4 .1

T he proof of Theorem  3.4.1 requires the  following definitions.

D e f i n i t i o n  C .l (L A N  C o n d i t i o n ) .  Let

n

£ » ( £ „ ,  7/J. ) =  J 2  ; x «’ Vu S i).
i=l

where 7^ is any curve in C2(Z ) such th a t  i p \p =p0 =  /* . Also let £„ =  L„(/3n ,~/pn) — 

L n((30, f ' ) .  Then for sufficiently large n,

£ " =  n ' l/26' j ^ LM ^ 0a) ~  \ 6 ' I c6 + op( l ) ,

where I L =  E [^ £ ( /30, 7/3o) ] [ ^ ( / 30,7/3„)]'- □

T he following lem m a gives sufficient conditions under which the LAN condition 

holds.

L e m m a  C .l. With 7p as defined above and  i , j  =  1 , . . .  ,p , assume that fo r  all (3 e  R p 

the loglikelihood (3 1-* £((3,7^; x , y, z) satisfies,

(0 E d k l (‘a > 7 /s ;x .y .s) =  0 .

(“ ) 2/.z)] + E [^^C/3, x , y, z ) T / s ;  x ,  y, z)]  =  0.

74
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(iii) Let  Q  be the measure induced by ( x ,y , z ) .  Then for  i = 1, . . .  ,p , the funct ions  

■^-£(-;/3, ~/p) are linearly Q  - independent. That  is, i f

m ^
Y , ak-rz-l{x-k,yk,z>k-,P,ifi) =  0

f o r  Q  - a. a. (x , y, z), then a* =  0 f o r  all k.

(iv) There exists a neighborhood N 0 o f  (30, such that for  all (x , y,  z) the map (3 i-» 

dg 2d0 l ( /3 ,7^; x , y , z )  is continuous on N 0, and,

(v) E  s u p ^ ^  11^ F l (0 , ' yp - ,x ,y ,z ) \  <  oo.

Then  the L A N  condition holds.

P r o o f . See Pfanzagl (1994, Page 265). □

We now prove Theorem 3.4.1.

P r o o f . [T h e o re m  3.4.1] We ob ta in  a  proof by contradiction. So let A ssum ption 3.4.1 

hold, and  suppose th a t there exists a  regular n 1̂ 2 consistent estim ator for (30 th a t  achieves 

the efficiency bounds when the param etric  scores are  projected onto T { ! F , f ' ) .  Let /3n 

denote th is estim ator. Then as a  consequence of the  the convolution theorem  (Pfanzagl 

1994, Page 289), 0 n is asym ptotically linear. T ha t is, there  exists a curve Xp €  T  satisfying 

^p\p=p0 =  / ’ > such that

n ^ 20 n - f 3 0) =  n - 1/ 2/ 2- 1^ ^ £ ( / 3 o,A0o;x „y ,- ,z i) +  Op( l ) ,  (C .l)

where I 2 is defined in Assum ption 3.4.1. Notice th a t  since /3n achieves the  lower bound 

I f 1, by Theorem  2.7.3 Xp is a  least favorable curve in T .  In particular, th is implies that

I2 — E

But as the  LAN condition holds for a  larger class of functions, it implies th a t for all

( ^ ,7p) €  R p x U n T  such th a t -fpg = /* ,
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£n =  n 1,2 Y l 6 ' 7ft,;*iift***) “  +  °p (1) ’ (C .2)

where,

/ r  = E
•_d_
d p ^ ( / 3 q , 7 / 3 0 ) ]  [ ^ ( A ) > 7 / 3 0 )

From  (C .l)  and (C.2) it is clear th a t under P 0,

n V \ P n - P Q) ±  N (0 , / 2- 1) and,

£„ - N ( - ^ 7 LM ' W

Therefore, by using the Cramer-W old device given in P roposition H .l

/ V » ( / 3 „ - A , ) ' \  JL ^  € 1 ) .
I C S'tLS\

w ith , c  =  A -B  [ £  ̂ (/30, 7/30)j 6 . Hence by LeCam ’s T h ird  Lem m a (Rieder

1994, Page 44),

n l' ’(/§B - / 3 0) - f > N  / a- lE
Pn \ dp K P o ^ P o ) dp t ( 0 o n p a)'

A nd since n 1/2(Pn -  /30) =  6,  this implies th a t

n ^ - ( P n - P n ) = n ^ - { P n -  p 0) -  n l' 2(A , -  p o) - U  N (M, / 2~ l ) ,
P r

w here the  bias (fi) of the asym ptotic  d istribution is

f d
H = /2 E 6 - 6 .

Therefore, P n is a  regular estim ator iff its asym ptotic d istribu tion  under P n does not 

depend upon 6. T h a t is, p n is regular iff n  =  0 . But,
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e  =  » o  K ' E  [ ^ ( A . A * . ) ]

[ ^ ( A > , V . ) ]  [ ^ ( A , , 7 „ „ )  

« E [ ^ ( A , A s . ) ] [ | w , 7 f t )

I p x p  — 0

•_d_
d/3 *(0o ’ ^0o) U /3 ^ /3° ,A/3°')

<£>

E

E

(C.3)

(C .4)

r

(C .5)

(C .6)

d£(0o, j p o) (  d( d  \  dC(0o,Xpa) ( d  \ 1 1  

U /3 7/5V  U /3  N J j (C  7)

+
L 9 0  9X

’d l ( 0 o,~tpa) (  d \  d l ( 0Q,Xpo) (  d
d l

( d  \  9 l ( 0 o,Xpo) (  d , \ \
\ i 0 l s ‘ ) -d~X u p  a").

=  0 ( C . 8 )

5/3 9X
d J i ^ X p A  +  3 f „ , A ^ J  f  _d

90 dX

o- E

<=> E

d£(0o, Xpa) 9 l ( 0a, Xpa) /  d
9 0 d x

d£(0o, Xpo) ^  9 i ( 0 a,Xpo) f  d

(sW. 
(>•) 
( f M

9£(0o,  70o) M  ^ _  

S T \ d 0  lp'J
d^(0o, Xpa) f  d ,
 3A V  1 = ° (C-9)

91(001 7Pa) (  d
9 j

d£(0o, Xf3o) f  d
dx

(sW = 0 
( i W = “•3/3 dX

R e m a r k  C . l .  W e n o w  exp la in  briefly h o w  t h e  a b o v e  e q u a t io n s  are o b ta in ed .

(i) (C.5) sim ply follows from the definition of I 2.

(ii) To see how (C .7) is obtained from the previous equation , notice that

(C-10)

( C . l l )

d £(3 t  1 i 5£(£o ,70„) ( d \ d^ ( A > , 7 0 O)  ----- ^ ----- +  T x  { d p i l 3*) and’

d ffn . v 9 i ( 0 o, Xpa) 9£(0O,XpQ) (  d \
t p W o i  A0O) = ----- ^  +  q ~x [ ^ 0)  ■

However dt('l3gp°a  ̂ =  ^, since the scores w ith respect to  the param eters of
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in terest are equal.

(iii) Now is the least favorable direction in T ( T ,  / ’ ), and  (C.10) follows from  the

the previous equation since

„  , a e ( 0 „ \ e j  /  d  , m  a<(/30,ABj  ( i  % \  „
E [ ~ S p —  + — dx—  IV-vJ — ax—  l^ sN  -  °'

By Theorem  H.3,this equation is just one of the  conditions which a re  necessary

and sufficient for projecting onto T (.F , /* ).

(iv) Finally, ( C . l l )  follows from  the  previous equation because  ̂is the  restric­

tion o f the Frechet derivative to  T ( ! F , f m).

Hence, Theorem  H.2 and ( C . l l )  imply th a t ^ X 0o €  x f=1T,(J r , /* ) is the unique solution 

to  the optim ization problem

, d W o M ,inf_____ E + ■(0
rd l ( 0 o, k p o) | a/QSo.Aft.) ■

a/3 dXd/3 d \

This means th a t  even when we search over a bigger space l i n T { ! F . / ’ ), the least favorable 

direction j 0 X0o is found to  lie in the  strictly smaller space T{!F,  /* ). But th is violates 

Assumption 3.4.1, implying th a t  /x ^  0 . Hence under /3„, the  bias in the asym ptotic  

distribution o f n 1/2( $ n -  (30) depends upon d, which implies th a t  tha t /3n is no t regular. 

But we had s ta r te d  with the assum ption th a t /3n was regular. Hence we get a contradiction. 

Notice th a t dependence upon d is considered undesirable for the following reason. For some 

0 <  a  < 1/2 choose 6 = o(na ) so th a t (3n —*■ /30, while the bias /z explodes to  ± o o . But 

this implies th a t  the sequence n 1/,2(/3n — (30) is not even tigh t, much less regular. □
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A PPEN D IX  D 

P R O O F S  O F  R E S U L T S  I N  S E C T I O N  3 .5

P r o o f .  [T h e o re m  3 . 5 . 1 ]  First notice th a t  /3n is measurable since L n(f3, f/p; x , y , z )  

is continuous in /3, and is a  m easurable function of (x , y , z )  for each (3. Now let a(/3) = 

Ei(f3,  T)p\x , y , z ) .  Then by Assum ption 3.5.1, a(/3) < a((30) if/3 ^  /30. Now by the  WLLN. 

^T„(/3, rfp) -£* a({3) for each (3 € B . In particu lar, this implies th a t ^ L n (/3, rjp) = Op( l) . 

Furtherm ore, by using the  m ean value theorem  for any (3l ,(32 € B ,

<  — X3 K(/3i, 77̂ 1; XJ , Jfj, Zj) -  t{i32, 77̂ ;  x ; , yj,Zj) \

< A „ | |/31 -/£32||,

w ith A n defined as

J —A * — I ' '

1 d l ( ( 3 , t7; X j , y j , z;-)
> sup ----------7m .----------

/3,tj6 B xK

d l j f r w x j i y j ^ j )
dr}

79
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and An =  Op( l )  by Assumption 3.5.2. Hence the modulus of continuity

u>x l . ( 6 ) =  suP -  L n(j32,Tf0 )\ < A nS.
l<« 71

Now choose any f ,  e >  0. Then since ^ L n(j3, rjp) =  Op( l) ,  if we can find a  6 > 0 such 

th a t  P r{ in i£,n(d) >  e} <  f ,  ^ L n(f3,T}0 ) will be tight in C(B). T h a t such a  6 exists, can be 

seen as follows.

F irst notice th a t since A n — Op( l ) ,  th ere  exists a  such th a t  P r{ |A „ | > A/f } <  f . 

Now let <5 =  e/M f . T hen,

Pr{wjL£,.(tf) >  e> <  P rH » *  > e}

=  Pr{A n > e/6}

=  Pr{A n >  Me}

< P r{ |A n | > Mf}

< f .

Hence, £ L n((3,r)p) is tight in C (B ). This implies th a t for any subsequence {n'} C {n}, 

there  exists a  fu rther subsequence {m} C {n'} such th a t

- T m( / 3 , ^ ) ^ n ( / 3 )  in C  (B).  (D .l)
m

Now, for each (3 G B , and rj 6 'H

^ ^ m m

— \Lm(/3,rjp ) -  Z/m(/3, T)p)\ =  — | J21( /3 ,  f a  X j , y , , z,-) -  £  1(0,  x , , , z; ) |m m ■ '  * "

d t j f a w - X j i y ^ Z j )

m

1
dr]~  m ^ SUP

< s u p |^ ( z ) - j / / j ( z ) |B m,
0 ,Z
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w ith B m =  ^  H JL i su p p ,, \ j- Then since B m =  Op( l)  by A ssum ption 3.5.2

and sup^ j \ v p ( z )  ~  V0(z )\ =  °p ( 1) by Assumption 3.5.3, we have

sup — |Z m(/3, ijp) -  L m(/3, r}p)\ 0. (D.2)
p  m

Also notice th a t  from  (D .l)

sup | — .£m(/3 ,i,p) — a(/3)| -Z+ 0. (D.3)
p  m

Therefore, by (D .2) and (D.3)

s u p |— L m((3,fip)  -  a(/3)| <  sup |— L m (/3, fip)  -  — L m(/3,Tjp)\ 
p m  p m  m

+  s u p |— L m (f3,T)p) -  a(/3)| (D.4)
p  m  

i 0.

B ut this im m ediately implies th a t

1
sup — L m(/3, ftp) -+ sup a(/3) =  a(/30). (D.5)

^ m  p

Furtherm ore,

|a(/3m) -  a(/30)| <  |-J-£m(/3m, ^  ) -  a ( $ m)\ 
m

+  ( D -6>m  m

Now since (D .4) holds for all (3 £ B , |;^Tm(/3m, ) — a(/3m)| 0. M oreover, since

Lmif imi  Vpm) = sup p L m(l3,fip), (D .5) implies th a t i £ m(/3m, J  a(/30). Following 

these observations (D .6) is reduced to  |a(/3m) — a(/30)| 0, i.e.

a ( / 3 J  ^  a(/30). (D.7)
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Now the identification condition implies th a t for any e >  0 and any /3 /  /30, th ere  exists 

a  neighborhood Np  o f /3 such th a t

inf |a((3) -  a(/30)l >  c- (D .8)
/3

B ut this means th a t

Pr{/3m € <  P r{ |a(/3m) -  a(/30)| >  e} -  0 (D .9)

by (D.7). So let N 0 denote any neighborhood of /30. Notice th a t  the collection o f neigh­

borhoods {Np : (3 €  B,f.3 ^  /30} is an open cover of B \ N 0, with Np  satisfying (D .8). But 

since B \ N 0 is com pact, there exists a  finite subcover { N p ^ . . .  , N p k}. Therefore, from 

(D .7) and (D .8)

Pr{/3m i  N 0} = Pr{/3m 6 B \ N 0}

< Pr{/3m 6 U?= liV<Ji}

< £ P r  { $ m £ N p ' }
1 =  1

— 0.

And this implies th a t /3m -£*• (30, as m  —*• oo. But since /30 does not depend in any way 

upon the subsequence {m} C {« '} , this convergence holds with m  replaced by n . T h a t is, 

$ n -£• /30, as n -*• oo. □

For proving asym ptotic norm ality  o f /3„, we need the following uniform CLT, and 

Lemma D .l and Lemma D.2 given below.

T h e o r e m  D .l ( J a i n  a n d  M a r c u s ) .  Let C (S) be the space o f  real-valued, continuous  

funct ions on a compact metric space (S , d ). Also let X n be a sequence of C (S )  - valued 

random variables on (Q, J ,  P)  satisfying
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(i) EAT„(s) =  0, fo r  all s  €  S,  and,

(ii) supJ6S E X *(s) =  1.

Suppose there exist a nonnegative random variable M ,  E M 2 =  1, and  a metr ic  p on S,  

which is continuous with respect to d, such that given s , t  € S ,  u  6 fi,

|X„(.s,u;) -  X n(f,a;)| <  M(u>)p(s, t).

I f  f  n y 2( S , e ) d e  < oo, then the sequence X„ obeys the central limit theorem. That is, 

n - i/2 ^ ? =l X i  converges weakly to a Gaussian measure on C (5 ).

P r o o f . See Jain  and M arcus (1975). □

N o t a t i o n  D.0.1. Let (50 be a  compact subset of th e  closed unit ball in l i n T { T , f m),

w .r.t. the  sup norm , centered a t  the zero function. T h a t is,

®o =  {/ S UnT(rj-) : ll/ll < 1, l l ^ ^ l l  < 1, l l ^ ^ l l  < 1}.
where || • || denotes the sup norm . Furtherm ore, let H{<8o,e) denote the  m etric  entropy of 

0 O under the  sup metric when 0 O is covered by a  finite e net. □

R e m a r k  D .l .  (i) <50 is com pact in C(Z), and can therefore itself be regarded as a

com pact metric space w ith the sup metric.

(ii) Let K  C R* be com pact. Then by a result of Kolmogorov and Tihom irov (1961), 

for every Q C Cr (A')

In our case k  =  2, r =  2, and Q =  0 O. Therefore, H(<50,e) < j .  □

L e m m a  D .l. Let iip be a least favorable curve. Then fo r  i =  1 , . . .  ,p ,

0 ) * - ■ ' * [ & ™ d- 

00  " - , / ,2£= ^ ( 4 : w . - s : i » . )  =  <*(!>•
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PRO OF. We will show (i). The proof o f (ii) is sim ilar. Now since the  Frechet derivative

f l l Q M g i X , „  / O _Qq — Vj x jP  VpK^jji

we have

r d d L n( 0 Q,T)f3o) u ^ _ , d  „
^  K-fe. -  W  =  1 1 ,  ^ ----------- ] ( W * i )  -  W % ) )

n ^

=  ~  £ [ * «  +  - T ^ W z jO K W 2;)  “  ^ 0(zi ) )
J=1 QPi
n 

j= i

where, A(x,-j,Zj) =  xy +  and f0(zy) =  ^ ( z , - )  -  ^ o(z; ) 6 l i n T { T , f ' ) .

R e m a r k  D .2 .  T he no tation  xtJ- here refers to  the  ith . elem ent of the  vector x ; . □  

Notice th a t since x and z  come from distributions with com pact support,

sup |A (x ,z ) | =  M  <  oo.
r,z

This also implies th a t  E |A ( x ,z )|2 < oo.

For any £ G <50, let us now look a t the m ap £ i—► A (x ,z )£ (z ). F irst, notice tha t since

||A (x ,z )f(z ) || =  sup |A (x ,z )f (z ) |
Z,Z

=  sup |A (x ,z ) ||f (z ) |
r,z

< ||f | |s u p |A (x ,z ) |
r,z

< A^llell,

f  i-> A (x ,z )f(z )  is a  continuous m apping on (50- T h a t is, th is m ap is an element of 

C(® 0)> the space of all continuous functions on So-
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Secondly, since each f  in <50 is also an  element of l in  T { T , /" ) ,

E A ( i ,z ) f ( z )  =  0

by the  least favorable curve p roperty  of rj0 . W ith these two points in mind, we can now 

tre a t {A (x i j  ,Zj)£ (Zj)} j=l as a  sequence o f C(<50) - valued random  variables w ith zero mean 

and finite variance. Note th a t the random  variable A(x ,  z ) f (z )  also has the p roperty  th a t 

for all £1,̂ 2 6 ®o,

\ A ( x , z ) ^ ( z )  -  A ( x ,z ) f2(z)| =  |A ( i ,z ) | |^ ( z )  -  & (z)|

< |A(z,z)|||fi - f 2||,

with E |A ( x ,z)|2 <  00. This fact coupled w ith the observation th a t

f  H l/2(<S0,€)de < 00,
Jo

allows us to  utilize the  uniform CLT of Ja in  and Marcus (1975). Hence from Theorem  D .l, 

for all f  6 ®o

- n ~ 1/2 £  A ( x i j , z j ) ^ ( z j ) =  - n ~ 1/2^ [ x 0- +  (D -10)
i = i  j = i  a R i

=  0 P(1). ( D .l l )

Now by A ssum ption 3.5.3, as n —* 00,

? i { n a i {fi0o -  tj0o) e<S0} — 1.

So w.l.o.g. assum e th a t n ai(fi0o — T)0a) E <S0, for the probability th a t this event does not

happen can be m ade arbitrarily  sm all. Then since (D.10) and ( D .l l )  hold for all f  €  ®o,

we have

- n ' I/2X > ,  +  ^ * 7 /s„ (* j)]n a ,( W zi)  ~  »7/So(zi ) )  =  ° p ( 1)’
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which implies th a t

n  1 /2  +  ^ W z i ) K f a o ( z i )  ~  W z i ) )  =  ° p ( 1 ) -
i= i

□

L e m m a  D .2 .  Let r/p be a least favorable curve. Then for i , j  =  1 , . . .  , p,

(i) LnO M /j) -  L n((3, T}p) =  r<il)(/3), with

sup0
1 d*rW((3)
n d(3id/3j = °P( l ) t

(ii) L„(/3, rfe) =  L „ ( /3 ,j^ )  +  - - ’'■f ^ -B)-(iip _  +  r ^ ( /3 ) ,  uu'f/i

<*
n ~ll2d 0 r^ ^ o )  =  oP( l ) .

P r o o f . [L em m a D .2 (i)] By a  Taylor expansion,

z ( 0 ,  V &  x > y , z )  =  £ ( / 3 ,  r j p ]  X ,  y, z) +  r a(/3; x , y, z ),

where,

r . ( f t  * , ! , ,* ) =  / '  ^  (1 l ) ’,e) i t  • ( W * )  -  ■»(»))•
7t=:0 OT)

Now let r a(/3; x , y ,z )  =  Q (1)(/3; x , y ,z)(p^(z) -  pp(z)), and note th a t  since, L n{P,f}p) 

Ln(P,Vp)  = L ^ i t i P i V & X k i y k i Z k )  -  l(P,rip;Xk,yk,Zk),  we have
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T n \ P )  =  ' 5 L Q {i){f r 'X-k ,yk ,Zk) (T) f3{ ,Zk)  -  ^ ( z t ) ) ,  a n d
i  =  l

t = l

+ 'j>2Q(1\ P ; x k , y k , Z k )
k = 1

(%(zt ) -  Jte(zjt))

-  ^ ( * » ) . implying

n dQjdPi n n  
k̂  =  l

d 2

Q (l)( P ; x k,yk,Zk) (^(Zfc) -  770(Zfc))

+  “ S  ^ r Q (1)(/3 ;x fc,y jt,zk)
n tz [ J

+  ^ E [ : 4 : 3 (1)(/3 ;x fc,y fc,z t )
fc=l LdPj

t= i

-  W ^ %i)

^ ?7g(Zt) ~  j a T a t y f a )
d P j d P i dfijdfii

Therefore, using Assum ption 3.5.2 and  Assum ption 3.5.3

sup
P

1 d - T n \ P )  < S U p |7 7 0 ( z ) - 7 7 0 ( z ) |i£
n dPjdPi

d 2

n kZl d0 idPi
<2(1)( / 3 ; x fc,yt,Zfc)

+  sup

0,11) 

dPj ■'PvZ') "  dPj

0 , ( 1)

°,(l)

d . d ( .
+  sup ~  W )p,z dpi dpi

o , ( i )

1 "

n kt t
— Q (1)( / 3 ; x fc, y fc, z lfe)

+  sup

o,(D

<*2 - , x <*2 , *
-Vtsiz) -  T F T F w )d/3j d/3,- ,pv ' d f i j d f i i

o,(D

o, ( i)

- E l <3 (U('3 ;Xfc>yfc’Zfc)
__________

o , ( i )

=  Op( l ) -

□
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R e m a r k  D.3. It is instructive to  see how the  term s involving Q (1> are Op( l ) .  So let us 

show th a t x k, y k, z t )| =  Op( l) .  A similar reasoning can be used to

verify th a t the o th e r term s are bounded in probability. Thus,

1 A |  d2 f 1 di(P, tf ip  +  (1 -  t)rj0 )
j W j a  Q ll)( 0 ' X t ' yk' Zk) =  ~ i t ,  1 j a J a  /  a-,n  “PjdPi n  ~  \apjdpi  J t=o arj

=  I \ H  C  g3^ ^ / 3  +  (1 -QT?/3)
n \Jt=o dPjdfiidT)

1 f 1 I^ Z i P i t V p  + CL-t f r ip)

dt

< - £  /  
n £ w < =
i  n

< — sup sup 
n  0€Bi)6W

= o p( i ) ,

01 dfydPidr) 

W , r ? )

dt

dt

dPjdfiidri

since

E sup sup
/3gB Ijew dfijdPidr]

< E  < sup sup 
I/36B Pew

d 3£(/3,r,)
dfydPidT)

< oo

by Assumption 3.5.2. □

P r o o f . [L e m m a  D .2 (ii)]  By a  Taylor expansion,

£(j3, T]p,; x , y , z ) , .
Z(P, rip; x , y ,  z) =  £{/3, T)p,; x , y, z) +  

where,

drj
(jfe(z) -  yp,{z)) +  r b{/3; x ,  y, z),

x 1 f 1 „  „ d 2£{/3,tfip +  { l - t ) T i p )  J4 r .  , _ x _  , _ xlS
r6(/3; x ,  y ,  z )  =  -  y ^ ( l  -  f ) -------------------- ^ -------------------- dt ■ [t}0 {z )  -  7 t e ( z ) J

=  Q (2)(/3 ;x ,j/,z)[t)^(z) -  ^ ( z ) ] 2.

But since L„{/3 , ti0 ) =  £ £ =1 £ ( /3 ,77̂ ; x t , y * ,z t ), we have

r n2)(/3) =  ^ Q (a)(j3 ;x t ,y t ,z t ) [^ ( z f c )  -  ^ (z * ) ]2,
k=l

which implies th a t
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Thus,

i = l
(fjpizk) -  M z k ) ) 2

+  2 j 2 Q ( 2)( P ; x k , y k , Z k ) ( f l i 3 ( z k )  ~  rip(zt ))
k = 1

J p rn }(P)  <  sup |^ ( z )  -  77̂ ( z)|2 ^  Jjj-Q(2\ P ; x k, y k , z k)
k = 1

+  2 sup Ityj(z) -  77̂ (z ) | sup
Z Z

x E l Q (a)( /3 ;x * ,* ,.* ) ! .
jt=i

Therefore, using A ssum ption 3.5.2 and Assumption 3.5.3

n - 1 / 2 1 A
Tg7r n2)(A)) <  sup [n1/4| ^ 0(z) -  ^ 0(z)|]2“ 53  j p Q W { ^ ^ y k , Z k )  

 ̂     -  ̂  ̂= 1
Op(l)

A
+  2 s u p n 1/4|7?0o(z) -  77/30(z)| sup n 1/4 w n e S z )  -  ^ W » >

"m o " 0 ,( 1 )

x 5^ |Q (2)(A>;x fc>ifc>zfc)l
t= i

■^T T

Similarly, the term s involving Q (2) can be shown to be Op( 1) by using the reasoning 

Rem ark D.3. □

We are now ready to  prove Theorem  3.5.2.

P r o o f . [T h e o re m  3 . 5 . 2 ]  From  a  Taylor expansion w .r.t. /3,
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0 =
d L n(P, rfp) I

d P  '/3=$„

d L n(P0,f)f3o) d?Ln(P, iip) 
d p  dp d p ' P=f3

A P n - P * ) ,

* ■  A A A ■ p

for some P n between P n and /30. Notice th a t since P n is consistent, P n —+ P 0. Thus,

r 1 d2L n(P,fip)
n dpdp ' P=0\.

- l
n

_ l/ 2dL„(P0, f)p0)
n lA P n - P o )  =

Now using a Taylor expansion w .r.t. 77,

Tn( / 3 , ^ ) - T n( /3 ,^ )  =  rW (/3)

where r ^ ( P )  as defined in Lem ma D .2(i). Therefore,

1 d,2L n(P, f)p) _  1 f L M j i l  = 1 d2r£K P)  
n d/3id(3j n dfcdfij n  dfiidfij ’

and from Lem m a D.2(i) we get th a t

dp

sup
1 d2L n(P, rip) _  1 d2L n(P,rjp)  

n d p d p 'n d p d p '

Now, yet ano ther Taylor expansion w .r.t. 77 yields

=  oP( l ) . (D.12)

“  f ,s'1 ~  ~  n i n j a aLnli3’J ’e } ( n - 1 l, ) + T™U3)d  77

with r ^ ( p )  defined in Lem m a D.2(ii). Hence, using Lem m a D .l and Lem m a D.2(ii),

—1/2d L n(Pi flp0) _  y/pdLniPi  VPg) _  —1/2
d p  d p

d d L n(P0,rjpo)
LdP drj (^0 “  ^ o )

, _ - l / 2 ^ ^ n ( P o ,V 0 B) f d d
+ n   Tr,  dj[3 00 — °

+ £ * > ( A )

= OpC1)̂
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which implies th a t

 —1 / 2 (/^Q7 VPp) _  _ - i/2 ^ n ( /3 p , T]po) , .
71 df3 d/3 +  pU J-

(D .1 3 )

1 d2L n((30, T)pa) 
n df3d(3'

- l
Therefore, (D.12) and (D .13) imply

» 1/J (A , - f t , )  =
It, UfJUfJ

But since ijp is a least favorable curve, ~ f / 30» and by S lu tsky’s Lemma

Now by the  CLT,

n ' / : (A , - f t )  =  n +  0p(1). (0.14)

and thus n ^ G S ,, -  /30) -1  N C O ,/^1). □

P r o o f . [T h e o re m  3.5 .3] Using the  asym ptotic linearity of /3n from  (D .14),

n  ^

n l/,J!/3„ -  f t )  = n _ 1/ , ^ / ^ i1̂ e . ( ) 30, i ;o „ ;x „ y „2i) +  o , ( l ) ,  and

Similarly, the LAN condition implies th a t for any 6 E R p

n d  1
£ n = n _1/2^ ^ / jg^(/3o ,770o;XiJyi , z , ) - - 5 7 0/  +  op( l ) ,  and

i=i ”

Hence by the Cram er - Wold device,

/ V ' , ( A , - f t ) \  _d
I £n ) P(

N
0 r - i
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Now let /3„ =  /30 -f- n ~ lf 2S.  T hen using LeCam ’s T hird  Lemma,

»I/!(A, -A) -f* N(*,#).
Pn

But this implies th a t

n ‘« ( 4  - f t . )  - p .  N (0 ,/„'■),
P n

and since the lim iting d istribution does not depend upon 6,13n is regular. □
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A PPE N D IX  E 

P R O O F S  O F  R E S U L T S  I N  S E C T I O N  3 .6

P r o o f . [T h e o re m  3 . 6 . 1 ]  Let A >  0 . Since 6m(Au,Av) =  =  ArS ' ( u , v ) ,

S'(-)  is homogeneous o f degree r. To verify the  orthogonality conditions, let g (-) be a 

homogeneous function o f degree r. Then since g ( z i , z 2) =  > 1)>

z Z E tx i z Z l ^ )  z\ 
E[(x,- -  6’ ( z u z2))g{zu z 2)\ =  E[{x,- E ( z f r | ^ )  ' ^

=  E [xig{zx.,z2) -  z\
E ( * r & )

=  E [Xig{zu z 2) -  z.
2

=  E [Xigiz^z-ij]  -  E [z.
2rE ( x jg ( z u z2) \ ^ )

2 E ( ^ r i f t )

=  E [xig{zu  z2)\ -  E [E {z.
2 E{Xig{zu z 2) \ ^ )  

2 r "■2-2

= E [xig(zv, z 2)\ -  E[
E [x{g{zu z2) \ ^ )

E
E ( - i l f t )

=  E [xig{z l , z 2)\ -  E [E  j xig{z l , z 2) \ ^ ^ )  

=  E [i,ff(2i , 22)] -  E [xig(zu z 2)] =  0.

k'S}'

Thus, the necessary and sufficient conditions for S’’( z i , z 2) to  be the required projection 

are satisfied. □

93

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

94

P r o o f . [ P ro p o s i t io n  3 . 6 . 1 ]  To see th a t  r}p(u,v) is a least favorable curve, first notice 

th a t  for i =  1, . . .  , p

d vr E X  • • z r • 1 — —

E & \ 2 ± = S .
4? ' *2j V

which by Theorem  3.6.1 is the least favorable direction. Hence, the  curve r]po certainly 

has the  least favorable direction as the tangen t vector. Now rjp is clearly a hom ogeneous 

function of degree r ,  i.e. rjp 6 T .  So to  verify th a t  Tjp is a least favorable curve, all we 

have to  do is to  show th a t r]pa = /* . To see th is, notice th a t a t /30,

” r E  [y izv ^  =
U

V v * e  [ ( E L ,  i . j f t o + =  ?

e  [ * 3 \ %  =  i E  =  i

Y

X ] PiO'
i = l

urE x - z r 1̂ 2. -  -X,J 2j >Z3j ~  V
E ~ 2 r | £ i j  _  u 

Z2j\z3, ~  «

V r E

+  E [ 4 ! \ %  = i f

E A o -
i = l

u rE x - z Tn 1̂  =  -X,l Z2]tzii «.

E ?.2r|iLz. -  a 2; 1 „

e  [ 4 r l £  =  5’

i = l

Vr E X - - z r l ii i  — — '2 2j l i3j -  „

E ;. 2 r | £ i i  _  u 2j 1 z 7j v

:=1

ur E X i j Z - A ^  =  -

E 1̂ "  =  ~ 1*2j «

V

+ f ' ( u , v ) .

Hence,
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f " ( u , v )  =
ur E V i ^ T i  =  f]

E z \ r |* ii =  a  
*3 ' Z2 j  v

p

- £ / * » -  
1 =  1

ur E XijZoir l ^  =  “ l3 2 j 1 Z2j v

E 2J 1 u

Therefore, 77̂  as defined in (3.6.1) is indeed a least favorable curve. To see th a t  i)p 

consistently  estim ates rfp, notice th a t from  standard  results on kernel estim ation

,  v 'E

Hence from  (E .l)  and (E.2)

ur E [w22jl £U.
*2j

= u
u

E 4 r
ti
U

urE * < i4 l
£1l
*3>

= tl
V

E 4 f i l . — ti
- j Z3j

and (E .l)

(E .2)

y r E " = i yjz 2j K( ~ _£] )

i = l T . U  4 ?  -  n f l)

- E f t -
i=i

urE X i j z Z A ^  =  -
*J 27 1 Z-Jj V

E 4 1 ^  =  -£3  1 z 3 j  u

which implies th a t fjp rjp. Therefore, fjp is a consistent estim ator of rjp. □
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A PPEN D IX  F 

P R O O F  O F T H E O R E M  3 .6 .2

To prove Theorem  3.6.2 we will closely follow Ichim ura (1993). The proof will be 

ob tained  as a  series of lemmas and  propositions. Because of its length, we will skip 

m ost of the  tedious algebra. Furtherm ore, we will only prove (1). T he p roof of (2), 

(1 '), and  (2 ') is similar. In w hat follows, the lim its of integration are always ( —oo, oo) 

unless otherwise specified.

N o t a t i o n  F.0.1. Let,

A n(u ,v )  =  -  ~~])
a n  .  *■ —  J n  _ 7 a  -n a n j = l

^ %2j

t =  u /v  

tj =  Zlj/Z2j

gnj{ u , v ) = vrz r2 j -  ^ - ] ) .
a„ u z2j

We will also make use of the following inequality, given in Ichim ura (1993), to 

m ajorize various terms.

T h e o r e m  F .l  ( B e r n s t e i n ’s  I n e q u a l i t y ) .  Let ,Y nn be independent random

9 6
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variables with zero means and bounded ranges, that is, |Yjn | <  cn . Write afn fo r  the 

variance o fY in. Suppose Vn > a \n +  . . .  +  a \ n . Then fo r  each >  0,

P r{ |F In +  . . .  +  Ynn\ > <  exp }  • □

Now let An(u, v) A ( u ,v ) .  Clearly, A (u ,  v) =  v rE[yjZ2}-\tj =  t]p(t). Also,

|A„(u, v) -  A ( u , u)| <  |A „(u, v) -  E A „(u, u)| +  |E A „(u, v) -  A (u, v)|.

VVe first determ ine the  ra te  a t which An(u ,v )  converges to  its probability  lim it. This 

will be done w ith the  help o f the  following lemmas.

L e m m a  F .l. supu „ |E A n(u , v) -  A(u, u)| =  0 ( a 2).

P r o o f . Since

=  —  f  K ( —
On J  a n 

=  v r J  K(s)E[yjZ 2j \ t  -  ans]p(t -  ans) ds.

For some t ’ between t — ans  and t,

|E A n(u, v) -  A { u , v)\ =  |t;r J  K(s)[^(< -  a„s) -  0 (f)] ds| 

= \vr \a2n/2\ J  s2K (s )r h " (n d s \  

< a 2nM

where,

M  =  sup |0 " (t) | SUP |vr | /  s2K (s)ds. 
t V J

Hence, supu „ |E A „(u, v) -  A (u ,  v)| =  0 ( a 2). □
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We now look a t the  term  |A „(u ,u ) — E A „ (u , v)|. Since the dependent variable y 

m ay be unbounded, a  tru n ca tio n  procedure is used to deal with this te rm . So let 

flnj =  ^{|y,|<M„} and I '  - =  1 — Inj-, where M n is a  sequence o f positive num bers chosen 

such th a t  M n —*• oo as n -* oo. Then,

A n( u , v ) -  E A „(u ,i;) =  (A „ (u ,v )  -  E A n( « ,o ) ) I +  (A „(ti,u ) -  E A n (u , u ))Ic, 

where.

(A n(u ,u )  -  E A „(ti,i;))I  =  - H i £ [ y !„ !£(— [f -  tj}) -  Ey,-IniK( — [t -  i,-])]
a n  a n

( A n(u ,v )  -  E A „(u, u ))Ic =  -  t j ]) -  E -  f,])].
j =i

Therefore,

P r{sup  | A n(u, v) -  E An(u, u)| >  2e} < Pr{sup |A „(u, v) -  E A„(u, u ) |Ic >  e}
u .v  u ,v

+  Pr{sup |A „(u, v) -  E A „(u , u)|K >  e}.
ti,U

L em m a  F .2 .  Let c0 = 2 E \y j\qsupUtV\gnj (u ,v ) \ .  Then,

Pr{sup |An(u , v)  -  E A„(it, u ) |Ic > e} <   T ^ r r  •
u,v  d n € A l n

P r o o f . By an application o f Holder and Chebychev inequalities,

n
Pr{sup | A„ -  E A „ |Ie >  e} =  P r{sup | v) -  E y j lcnjgnj{u ,  u)]| >  nane}

U,u U,U

n

< P r { ^ s u p  \[yjKj9nj(u,v) - E y j l ^ g n j i ^ v ) ] ]  > nane} 
j =i

e |  yj\q< c
a n e M n ~ l  ’

where c =  2 sup„ „ |5„y(u ,u ) |.  □
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Now since Z x x Z2 is compact by assum ption , w.l.o.g. assum e th a t  it lies inside the 

un it cube in R 2. Also let 6 and u  deno te  some positive numbers in this proof th a t are 

chosen appropriately. W hat values o f  S, v  to  choose will be determ ined according to  

th e  requirem ents of the  subsequent lem m as. For i =  1,2, partition  Z { into IV,- cubes 

having each side of length 8aun. Therefore, Z x x Z2 is partitioned  in to  N  =  N x x Ar2 

cubes with N  =  S~2a~2v. T ha t is, Z x x  Z 2 C U ^S ,-, where S,- is an  open cube in 

R 2 w ith each side of length 62a 2", and  N  =  8~2a~2v. Furtherm ore, for each S,- let 

(u t-, Vi) 6 S,- w ith i =  1 , . . .  , N .  T hen ,

Pr{sup | An(u, u) — E A n(u, u)|E >  e} <  P r - fU ^  sup | A n(u, v) — E A n(u, u )|I >  e}
u,u S,

N

< 5 2  Pr{sup |A„(u, v) -  E A „(u, u ) |I  >  e}
7^i s-

=  r i  +  T2 +  r 3 ,  where, (F .l)

N  i  n  n e

n  =  X 2  P r ( l  —  Yllyilni9ni(u,v) -  Eyjlnjgnj(u, u)] |  >  — }
i = i  j = i  z

1 n  ^

T2 = Y 2  Pr{sup  I —  Y ^ [y j l nj9nj(u, v)  -  %T„j5nj(wi, u,)]| >  — }
i = i  s ' a " j = l

L e m m a  F.3.  Let T l  be defined as above. Then

T I  < £ "2e x p { -2t /lo g a n -  

where, c j 1 =  16sup„v2r supt E [(y j lnjZ2j ) 2\t] su p ,p ( t) .

P r o o f . As in Ichim ura (1993), apply  B ernstein’s Inequality w ith

7l dn € . .
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where,

ci = sup \gnj (u ,  u)|
U,V

c2 =  2[sup v 2r] [supE [(y;-I„;z£y)2|*]] [supp(i)].
u.u t t

□

L e m m a  F .4 .  With T 2  as defined before, T2  <  S~2 e x p { —2 i / l o g a „  -  CL3" ^  } +  o ( l ) .

P r o o f . First notice that

Pr{sup | —  Y l[ y j ln jg n j(u ,v )  -  J / y («<, Vf)]l >  -J-} =  T 2 a + T 2 b ' s. an 4

where,

n 1
T 2 a =  Pr{| Y '  — [su p \y j lnjgnj(u, v ) -  v{)\

f ^ i an S.

T I E
-  E sup \ y j l n j 9 n j ( u , u) -  T / y (U,', U,)|]| >  — }

S. o

T2S =  P r{— E sup \y j lnjgnj ( u ,v )  -  yjlnjgnjiuiiVi)]  >  
an s, o

Once again, apply Bernstein’s inequality  with

&  =  cn =  c 6 M „ < " 1, F n  =  c7n a ; (t,-1)

where c6 =  2«5c4, c7 =  <52cj;, and 

c4 =  sup |ur - l ZyK /(-^-[^- -  — ■])! +  sup |rv r - l22j K ( ~ [ ~  — ~ " ]) l
u ,u € S t ^  ^ 2 j  u , u g S t ^  ^ 2 j

+  sup I ^ 7 22jk ' ( ~ [ "  ~  r 1 ])!
u , « e s ,  V *  r  J  n -  «  J - - . -

to  get,

,_________  nane2 c8 ,
A -  a2"-3 +
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w i t h  c 8 1 =  1 2 8 c 7 .

To handle T 2 B, apply Chebychev and Holder inequalities to  get

8(E |yJT n j|2) I/2(E [supS| \ g n j { u , v )  -  g n j { u u v j ) \ ) 2 ) 112
T 2 b <

e a „

Now q > 2  implies th a t (E |y; llny|2)1/2 <  oo. Moreover, uniform  continuity of gn](u ,v )  on

St- allows us to  conclude th a t T 2 B <  —, where c10 =  £[E ly jln jl2]1̂ 2- Therefore,

T2<Y,T2a + Y.T2b
t=l 1=1

^  at _ r  nane2c8 , , c10< _1
s  *  » p { -  rr M --a F rc } +  — •

1
B ut notice th a t for u > 1, aJJ-1 —*• 0. Hence by choosing v  > 1,  *• 0, and

Furtherm ore, it may also be shown th a t if u > 1.5 and n is sufficiently large, 

xt r nane2c8 , . ,_2 , _ . c3nane2
- 6 exP < - 2i/loe o” -

Hence, T2 < 6~2 exp{—2i/lo g a„  — } +  o (l) . □

L e m m a  F.5 . With T3 as defined before, T3 =  o (l) .

P r o o f . N o t i c e  t h a t  b y  t h e  p r e v io u s  r e su l t ,

y  1 n ne
T 3 =  Pr{sup |— ^ [ E % I ni5nj(u, u) -  E v,-)]| > —  }

i= i  s - °n j =i  4
v  a

< Y  Pr{E sup \ y j l n j g n j ( u ,  v) -  y j l n j g n j ( u i ,  i?,)| >  - M
i=i  s-
JV

< E T ^
i- l

<  o(l)-
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P r o p o s i t i o n  F .l. |A „(u, v)  -  A (u ,v ) | =  Op(n~x ), i f

A  (1 — 2A)(q — 1)
— < a  < ---------------------- .2 q

P r o o f . Since we have obtained  the  term s th a t majorize T \ , T 2  and T 3 , by (F .l)  we 

have

P r{sup  | A„(u, v ) — E A „(u , u ) |I  >  e} =  T I  +  T 2  +  T3 
s,

<  28~2 exp{—2i/ log an -  £ } +  ° (1)•

This inequality, combined w ith  the  previously obtained result 

Pr{sup |A „(u , u) -  E A „(u, u ) |Ic >  e} < -----
u,u CLn€Jvin

leads to  the  conclusion th a t

P r{sup  |A „(u, v) -  E An(u, u )| >  2e} <  °G - ianeM%

+  26~2exp{—2i/log an -  } +  o(i)-

Now in the  above inequality, replace e by n~ xeo, an by n - ° , and choose

na„
M n =

( log On)"1 ^

L( — log an)

Then after some tedious algebra we can show th a t

Pr{sup | A „(u, v) — E A n(u, u)| >  2n -Ac0} —► 0,
U , V

if,

(i) a  <  m in{l, l r~ —, 1 -  2A, and

(ii) v  is chosen such th a t v  > m ax{1 .5 ,1 +  A /a}.
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Therefore, com bining this result w ith  the fact that

sup |E An(u, v ) -  A (u ,  u)| =  0 ( a 2) =  0 ( n ~ 2a),
U,V

we get th a t

sup |A „(u, v ) — A (u ,  u)| =  0(m ax{ra~A, n ~ 2a}).
U,V

Hence supu „ |An(u , u) -  A(u, u)| =  0 p( n _A), if

A ^ . r, ? - l - 2 A  , ( l - 2 A ) ( g - l ) .
-  <  a  <  m m {l, -  , 1 -  2A, ^ ^ ------ -} .2 q q

B ut since,

l > l - 2A > ( 1 - 2A )(1- r i ,
9

and
9 - 1 - 2 A   ̂ (1 -  2\){q -  1)

9 9

for q >  2, the condition on a  simplifies to

A  (1 — 2A)(<7 -  1)
2̂  ---------- q ’

□

R e m a r k  F .l .  T his proposition shows th a t v  should be chosen such th a t

v  >  m ax { 1 .5 ,1 + A/a}

while constructing the  cubes S,-. Clearly, this value of v  satisfies the  requirements of 

Lem m a F.4. □

P r o p o s i t i o n  F .2. Let B n(u, v) i  B (u ,  v). Then,

sup |B n(u ,v )  -  B { u , v )| = Op(n ~ x)
U,V

if,
A  (1 -  2A)(<7 -  1)
2  ^ '
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P r o o f . Since B n(u ,v )  is ob tained  from A „(u ,v ) by pu tting  v ryj =  1, the resu lt of the 

previous proposition applies. □

We are now in a  position to  finally prove Result (1) of Theorem  3.6.2.

P r o o f . [T h e o re m  3 .6 .2] F irst notice th a t

, A n(u ,v )  ^ a C ni(u ,v )
^ ( u ’ u ) =  T 7 — T _ 2 ^ & “6"7— 7B n(u ,v )  l=1 B n( u , v )

where,

C n i ( u ,  V )  =

v ) =

e ;= . -  £ ] )

C i(u , v )A ( u ,v )
B (u ,v )  B { u ,v ) ' ‘

and  C ni ( u , v )  C ,(u , v).  Now,

fj0 ( u , v ) - r i p ( u , v )  =
A n( u ,v )  A (u,u)
B n{u, v) B (u ,v ) 5 >

i =i

Cni(u, v ) C ,(u , v )
5 „ (u ,u )  5 ( u ,u )

Now, since infUi„ \B(u,  u)| >  0, 0 <  supu „ |A(u, «)| <  oo, and 0 <  supu „ |C ,(u , u)| <  oo by 

assum ption, Proposition F .l  and  Proposition F.2 readily imply th a t

sup
U.tf

An ( u , v) A (u .v )
B n{u, v) B ( u , v)

=  op(n~ A),

sup
u,v

Cni(u, v ) C ,(u, v)
B n( u ,v )  B (u ,v ) = Op(n )

And since each /?,• is bounded,
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sup IT)p{u, V) -  7/(3(a , u)| <  sup
U,Vt0 U,V

A n(u ,v )  A ( u , v )
B „ (u ,v )  B ( u , v )

^  Cni(u, v) Q ( u , v ) 
+  2 ^  sup

i=i “•» 5 „ (u ,u )  5 ( a ,u )
sup |/3,-1

< sup
u) A (a, v)

B n(u ,v )  B ( u , v )
p_

+  Af ^  sup
C „ ,(u ,u ) C,•(« ,«)

(«,!») 5 (« ,U )
sup IAI 
0

= op(n  A).

Hence, supu u /3 |t/^(u, u) -  t//3(u ,t;) | =  op( n ' A), which certainly implies tha t

sup ltyj0K  v ) ~  u)l = °p(n_A)-

□
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APPENDIX G 

P R O O F S  O F R E SU L TS IN  SE C T IO N  3 .7

R e m a r k  G .l. In this section, all convergence is w .r.t. the C2 norm . □

P r o o f . [T h e o re m  3 .7 .1 ] Using Theorem  A.2 we have to  show th a t  T  — R + /‘ =  

T { F ,  /* )• We proceed case by case.

C a s e  I : /*  is strictly concave on Z:

If /*  is strictly concave, /*  €  i n t ^ )  which implies th a t  T (J r, / ' )  =  H.

C a s e  I I :  f ’ is affine on Z:

=>• Let /  6 T  — R + /* . Then there exists a  sequence (A„ ,/„ )  € (0,o o ) x  F ,  such th a t 

fn  — ^ nf ‘ —* / •  But since /*  is linear, /„  — A„ /*  is a  convergent sequence of concave 

functions. Hence the lim it /  is also a concave function, i.e. /  £ F .  This shows th a t 

T  -  R + + fm C T .

To show the reverse inequality, let <5 G T .  Now for t > 0, define rj(u) = f ' ( u ) + t6 ( u ) .  

T hen , for all u € Z and a  6  R 2,

a ' [ V 2(Tj(u) — td (u ))]a ] =  o:'[V2/* (u )]a

= 0,

since /*  is affine on Z. This implies th a t 77 — t6  G T ,  which further implies th a t 77 6 T .
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Therefore, S £ T  — \ f m C T  — R+/ * .

C a s e  I I I :  /*  is concave (but not strictly  concave) on Z :

Since /*  is concave bu t not strictly concave, there  exists a  nonem pty set Z 0 C Z such th a t, 

d e t[V 2/* (u )j =  0 for u  G Z 0, while for u  G Z — Z0 the  Hessian m atrix  V 2/ ‘ (u) is negative 

definite.

We first show th a t  T  — R ++/ “ C W . So let /  G T  — R ++/*• T hen there exists a 

sequence (A„ , /„ )  G (0 ,oo) x T ,  such th a t  / „  -  A„ /*  — / .  Let gn {u) =  f n(u) -  A„ /* (« ) . 

Now notice th a t on  Z0, det[V 2y„ — V 2/ n] =  A2 det[V 2/*] =  0. i.e. th e  determ inant of 

th e  Hessian of gn — f n vanishes on Z0. B ut this implies th a t on  Z0, gn -  /„  G W , i.e. 

gn G W  +  /„• However, / „  6  f  C W  im plying th a t  £r„ G W  since W  is a convex cone. But 

th is  says th a t gn is a  convergent sequence in the  closed cone W . Therefore, its limit /  also 

lies in W . T hat is, T  — R ++/*  C W .

Now for the reverse inequality. Let 6 be any function in W , and for t > 0 define 

Tjt(u)  =  f ‘ (u) -(- tS (u) .  Then if we can show th a t  i]t (u) £ T  for all u G Z, we are done 

because then 6 = 7 £ T  — } / ’ C f  -  R + / ’ , implying th a t W C f  -  R +/*-

So we show th a t  rjt G T .  Now as before, notice that on Zo, de tfV 2??, — £V2£] =  

d e t[V 2/ ‘ ] =  0. i.e. the  determ inant of th e  Hessian of r)t — tS, vanishes on Z 0. There­

fore, 7?, G W  + t6. However, since 6 was chosen to  be in W  and W  is a  convex cone, we 

have th a t 77 £  W . T hus the Hessian of 77 is negative semi-definite on  Z 0.

Now on Z — Z 0 the  Hessian of / “ is negative definite, while no such statem ent can be 

m ade about the Hessian of 6. This implies th a t  for all a  G R 2, cx.'\^72rj\cx. =  a '[ V 2/ ' ] a  +  

t£x'[V2<5]a: <  0, for sufficiently small t. i.e. on Z — Z 0, 77 is strictly  concave. Thus we have 

shown th a t for all ce G R 2,

T h a t is, 77 is concave on Z. And since 77 G H  by construction, we have th a t 77 G T .  □
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To prove T heorem  3.7.2, we need th e  following definition and the subsequent lem ­

mas.

D e f in i t io n  G .l .  Let V w  =  { /  €  H  : /  =  f i  — fo, for so m e/^/2 6  W }. T hat is, V w  

is the set of all functions in H,  which can be expressed as th e  difference of two functions 

in W.

R e m a rk  G .2. It is easy to see from its definition, th a t  V w  C H  is a  linear space 

containing W . □

Lemma G .l . V w  is a Banach space containing  W.

P r o o f .  As th e  above rem ark shows, V w  is a  linear space containing W . So it only 

remains to show th a t  V w  is complete. So let /„  be a  sequence in V w  th a t converges in 

C2 norm to / .  W e show that /  £ V w • Since the convergence is in the C2 norm , /  £  ~H. 

So if we can show th a t  /  can be w ritten as the  difference of two functions in >V, we are 

done. This is done as follows. For z € Z , define <7o(z) =  ~ ( z i +  z\)- Then since the 

Hessian of g0 is negative definite on Z, g0 6  W . Now for all z  £ Z, consider the function 

h(z) =  / ( z) -|- <̂7o(z), where c >  0. Therefore, for all a  €  R 2,

q:/[V2/i(z)]q' =  a '[ V 2/ ( z ) ] a  +  j a ' [ V 2 gQ(z)\a.

< 0,

for sufficiently sm all e, since g0 has a negative definite H essian1 and Z is com pact. This 

implies th a t h  is strictly  concave for sufficiently small e, i.e. h €  W , and /  =  h  — j g 0. 

Moreover, \ g 0 £  W , since c >  0 and W  is a cone. Therefore, /  can be w ritten  as the 

difference of two functions in W . Hence, /  € V w -  □

lAnd therefore, go is strictly concave.
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L e m m a  G.2. Let <£ be the collection o f  all Banach spaces containing  W , and let l in  W  =  

C\x$zX. 2 Then, V w  = U n W .

P r o o f . Notice th a t  since % € ( £ , < £  is not empty. We first show th a t V w  C  / in W . 

So let X  be any Banach space containing W . Then due to  the  linearity of X ,  —W  C X .  

Now let /  6  V w -  Therefore, f  — f \  — f i  for some / i ,/2 €  W . But this implies th a t 

/1 € W  C -T and  - / 2 E - W  C X .  Therefore, again by linearity of X ,  f i  -f ( —f 2) €  X .  

T ha t is, V w  C X ,  and since X  was an a rb itra ry  elem ent of £ , V w  C =  l in  W .

The o ther direction is even easier to  show. By Lem m a G .l ,  V w  is a B anach space 

th a t contains W . Also, by definition l in  W  is the smallest Banach space containing VV. 

Therefore, these two statem ents together imply th a t l in  W  c  V w - □

L e m m a  G.3. V w  ~  W.

P r o o f . Clearly V w  C K. But H  C V w  from Lem m a G .l. □

We are now ready to  prove Theorem  3.7.2.

P r o o f . [T h e o re m  3 . 7 . 2 ]  W hen / ’ is strictly  concave, =  H, and there  is

nothing to  prove. W hen /*  is concave, bu t not strictly  concave, the proof is straightforw ard 

from Lemma G.2 and Lemma G.3. We now look at the  case when / "  is affine on Z. Notice 

tha t when Z0 =  Z, we obtain W  =  !F. Hence, letting  Zo =  Z and replacing W  by T  in 

Lemma G .l, Lem m a G.2 and Lemma G .3, we obtain the required result. □

2That is, lin W is the smallest closed linear space containing W.
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A PPEN D IX  H 

SOME MISCELLANEOUS RESULTS

P r o o f .  [T h e o re m  2.6.1] = »  VVe first show th a t l i n T ( T ,  f " )  C U nT .  This will imply 

th a t U n T ( T , f ‘ ) C UnT.  So let /  G l i n T ( T , /* ) . This m eans th a t for some m , there 

exist {< *!,... , a m} G R m, and €  x ^ =1T (J r , /* )  such th a t /  =  Y T = ia ifi-

Now since each /,• € T ( T , f m) = T  — R ++/* , there  exist 6 T  x  R++, such th a t

/ i  =  I im „_ 00(ffn — A„/*). But since gn € J7 C U n T  and An/ "  G T  C /zn.F, we get th a t 

<7n — An/ '  is a  convergent sequence in U nT .  Hence its lim it is an element of l i n T .  i.e., 

f t  £  U n T .  Therefore, each /,• is an  element of U n T .  Thus, /  =  YT=\a ifi  € U n T  which 

implies th a t  U n T (T ,  f~) C U nT.

< =  W e now show that /z n F  C U n T (T ,  /* ). This will imply that U n T  C l i n T ( T . f ’ ). 

So let /  €  U n T .  This implies th a t  there exist { a x, . . .  , o m} G R m, and { / i , . . .  ,/m }  € 

x ^ F  such th a t  /  =  o , / i .  B ut since / “ G T ( T , f " ) ,  th is means th a t each f i  £  T  C

T ( F ,  /* ) . Therefore, /  =  £"L i a,-/f G U n T (T ,  /* ) . Hence, /z n F  C U n T (T ,  /* ) . □

T h e o r e m  H .l (A U s e f u l  R e s u l t ) .  Let f  be a real valued. C2 function on  R*. Let 

z G R k, and suppose that f  is convex (resp. concave)  at z .  Then , det[V 2/(z ) ]  =  0 i f f  there 

exists at least one non-zero ol £  R*, such that o :'[V 2/ ( z ) ] a  =  0.

P r o o f . T he proof is well known, but instructive. We provide it for the sake of com-
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pleteness.

=»• Let det[V 2/(z ) ]  =  0. T hen the system  o f linear equations [V2/ ( z ) ] x  =  0, has a 

non-zero solution x0 G R fc. T h a t is, [V2/(z ) ]x 0 =  0, which implies th a t Xq[V2/ ( z ) ] x 0 =  0.

< =  Now suppose th a t there  exists a non-zero a Q G R*, such th a t a o [V 2/(z)]o :o  =  0. 

Let Q ( a )  =  o:/[V2/ ( z ) ] a .  T hen  since /  was convex (resp. concave) a t z , we have that 

Q ( a ) is >  0 (resp. <  0). In either case, a 0 minimizes (resp. maximizes) Q(ol). The 

first order conditions then imply th a t dQ̂  |a =a0 =  0. T h a t is, [V2/(z)]cXo =  0. But this 

m eans th a t  the  system of linear equations [V2/(z )]o : =  0 has a non-zero solution a 0. T hat 

is, d e t[V 2/(z ) ]  =  0. □

T h e o r e m  H.2 ( C l a s s i c a l  P r o j e c t i o n  T h e o r e m ).  Let H  be a Hilbert space and. M  

a closed subspace o f  H . Corresponding to any vector x  G H , there is a unique vector 

m 0 £ M  such that ||z  -  m 0|| <  ||ar — m|| fo r  all m  G M . Furthermore, a necessary 

and sufficient condition that m 0 G M  be the unique minimizing vector is that x  — m 0 be 

orthogonal to M .

P r o o f . See Luenberger ( 1 9 6 9 ) .  □

T h e o r e m  H.3 ( P r o j e c t i o n  o n  C o n v e x  C o n e s ) .  Let H be a Hilbert space and M  a 

closed convex cone in H . Corresponding to any vector x  G H, there is a unique vector 

m 0 G M  such that ||x — m 0|| <  ||x — m|| fo r  all m  €  M . Furthermore, a necessary and 

sufficient condition that m 0 E M  be the unique m in im izing  vector is that (x  — m 0, m 0) =  0, 

and that (x — m 0, m) < 0 fo r  all m  6  M .

P r o o f . See Barlow, Bartholom ew , Bremner, and  Brunk ( 19 72) .  □

P r o p o s i t i o n  H . l  ( C r a m e r  - W o l d  D e v i c e ).  Let X n denote a sequence o f  random 

variables in R p. Then X n X  <=> dxX n -i- d 'X , fo r  every 6 £  R p.
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A PPEN D IX  I 

P R O O F  O F  L E M M A  4 .3 .1

t  “  x  ■
Let t  be  a fixed point in Sx- T hen since # „ (t)  =  (n6^)_1 £ " =1 VjK (—-—- ) ,

n
(Tl̂ ) 1/2[5n ( t ) - E / 5„(t)]  =  n " 1/2^ t o nj-(t), where,

i = i

=  WHyj K( ^ )  -  E » K ( 1 ^ ) } .
yn

Notice th a t E tnnj-(t) =  0, and  th a t  {u;n l ( t ) , . . .  ,tnni„ (t)}  are i.i.d. term s. It 

is then easy to  see th a t Varton j ( t )  =  cx2( t)  +  o ( l) . Furtherm ore, a fter some more 

algebra we can also verify th a t wnj ( t )  satisfies the  sufficient condition in Lyapunov’s 

CLT. T h a t is, for some a  > 0,

=  o ( l) ,

since nb£ —>• oo. Therefore, we have proved th a t for each fixed t  6  S x ,

(nf£)1/2 [$n(t) -  E , ffn(t)] A  N(0, <r2( t) ) .
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This clearly shows th a t for each t j ,  where j  =  1 , . . .  , m ,

(ri K Y ' 2 [9n{^) -  E / S n M  -  N (0 , a \ t j ) ) .

However, in order to  obtain  the final result we still have to  show th a t the covariance 

between the various term s is zero. We verify this fact for only two term s. The 

extension to m  term s follows similarly.

So let s and t  be any two fixed points in Sx-  Then using the  result ju st obtained, 

the Cramer-W old device yields th a t

where, p ( s , t )  =  cov(tun j (s), wnj ( t ) ) .  Now to  show p{s , t )  =  o ( l) ,  notice th a t

p{ s , t )  =  cov(tnn j (s), U7„j(t))

where, 7( t)  =  E ( y 2|t ) .  Now let s — x;- =  6„u. T hen by Lebesgue’s Dom inated 

Convergence Theorem ,

since K ( ^  -f u ) —*• 0 as 6„ —*■ 0. Similarly, we can show th a t
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± E { K ( 5 - ^ ) / ( x , ) } E { K ( i ^ ) / ( x ; )} =

[ K (u)/(s — 6„u)p(s -  6nu) du • f K (u)/(t -  6„u)p(t -  6„u) du
d [ _ l , l ] P  - / [ - l . l ] ! -

=  "(I)-

Substitu ting  these results in the expression for p ( s , t )  yields th a t  p ( s , t )  —* 

Hence, we are done. □
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A PPEN D IX  J 

P R O O F  O F L E M M A  4 .3 .2

F irst note th a t  since Ey (j/y|xy) =  /(x y ) , we have th a t  Ey. (r/y|xy) =  /^ (x y ). Therefore, 

using th e  law of iterated m athem atical expectations and  the fact tha t the observations 

{ x i , . . .  , x n } a re i.i.d .,

=  i E { K ( ^ ) E / ; f e | x ) )>

= k i „ l, K ( i i r ' >̂ x ‘ M X i ) d x ‘

= [  K (u ) /* ( t  — 6nu )p (t — 6n u )d u .

Similarly,

ffn(t) =  /  K ( u ) / ( t  -  6nu )p (t -  bnu ) d u , and the bias term
• / [ - u p

B n( t)  = (n&P)1/2 f  K (u )p (t -  6 „ u ) { / '( t  -  6„u) -  / ( t  -  6nu)} du .
J i-  i . i p

Now let 5 n ( t |H 0) denote the bias under H0, while f?„ (t|H ln ) denotes the  bias under
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Hln. Then,

(J.l)

= (”^ ) 1/2 [ K(u)p(t -  6nu ){ /‘(t -  bnu) -  /* (t -  6„u)} du
1 up

K(u)p(t — 6„u)£(t -  6„u) du
[ -U ] '

= 5„(t|H 0) -  /  K(u)p(t — 6„u)d(t — bnu) du
[ - 1.1]'

= fln(t|H0)- p ( t ) d ( t )  + 0(l).

Therefore, to prove Lem m a 4.3.2 we simply have to  show th a t Z?n( t |H 0) =  o (l). 

However, before showing th is  we consider some local alternatives th a t cannot be 

distinguished from the null hypothesis.

R e m a r k  J . l .  As pointed o u t by Severini and Staniswalis (1991), ( J . l )  clearly shows 

th a t  local alternatives th a t converge to  f "  a t rates faster than  (n6p ) ^ 2 will not be de­

tectab le . For in this case we would sim ply have th a t 5 „ ( t |H i„ )  =  f?„ (t|H 0) +  o ( l) . More­

over, the  sam e would also hold for all points t  a t which d (t) =  0, and  therefore such local 

alternatives are also not detectab le. One way to  get rid of such local alternatives is to  

m ake m  a function of n, such th a t  m (n ) —>• oo, as n  —*■ oo. This m eans th a t the  function 

6 , which satisfies tf(ty) =  0 for j  = 1 , . . .  ,m (n ), exhibits a highly oscillatory behavior as 

n —> oo, and is therefore unsuitab le as an alternative. □

Now back to our original problem , i.e. showing Rn(t|H 0) =  o ( l) .  To see this, 

notice th a t since the kernel vanishes outside [—1, l]p,
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| 5 n (t|H 0)| =  {nf}pn) 1,21 f  K (u )p (t -  6„u ){ /* (t -  6„u) -  /* ( t  -  6„u)} du\
1.1]'

<  W ) 1/2 sup | / ; ( u )  -  /* (u ) | sup p (u ) .
i»6[—i . i ] 1' ue [ - i , i ] i >

B ut from Remaxk 4.2.1(iii) we have

sup | / ; ( u ) - / ' ( u ) |  =  Op( { l o g n / n } ^ ) ,  
ue[o,i]*>

and this implies th a t 5 „ ( t |H 0) =  Op( - \ /n 6 n { ^ 2-}3̂ ') .  Now, from standard  results 

on kernel regression we know th a t the asym ptotically optim al choice of bandw idth is 

given by bn =  W ith  this choice o f 6„, it is easily seen th a t for f  g

(0 , 1),

f l„ ( t |H 0) =  Op( y / n & { l o g n / n } & )

M m } *

= 0P( 1).

Hence, B „(t|H 0) =  op( l )  uniformly in t .  □
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